Skip to main content

Advertisement

Log in

The effect of zinc fertilizer on maize growth, leaf mineral nutrition, and caterpillar herbivory

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Mineral nutrients, such as zinc (Zn), are critical for plant growth; however, the effect of Zn on insect herbivory is poorly characterized. Because Zn deficiency may compromise plant physiology while high levels of zinc may be directly toxic to herbivores, we predicted lepidopteran herbivores would perform best on plants deficient in Zn or those with an intermediate dose of Zn fertilizer. We first tested these hypotheses in a greenhouse experiment using maize (Zea mays L. [Poaceae]) and two noctuid caterpillars, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and evaluated the effects of a normal range of Zn (0–11.7 g m−3) on the interaction between maize and each caterpillar species. In the greenhouse, we found Zn increased uptake of other nutrients, particularly nitrogen (N), and fertilizing with just 2.5 g m−3 Zn maximized maize growth. Spodoptera frugiperda performance increased marginally with Zn fertilization. While neither caterpillar species was directly affected by Zn concentrations in leaves, S. frugiperda caterpillars responded to leaf N. In the field, we investigated the effect of Zn fertilization on leaf-nutrient concentrations, early season damage by resident herbivores, performance of S. frugiperda on excised leaf tissue, and maize yield. We found fertilizing with Zn increased leaf N, but compared to the greenhouse experiment, had a smaller effect on Zn uptake and no effect on herbivory. Zinc treatments did not affect maize yield in the field. We conclude that Zn fertilization can increase N leaf concentrations, which in turn can affect some herbivores, with species-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and code for statistical analyses can be found on ScholarSphere at https://doi.org/10.26207/pmrc-tc85

References

  • Ali S, Ullah MI, Saeed MF, Khalid S, Saqib M, Arshad M, Afzal M, Damalas C (2019) Heavy metal exposure through artificial diet reduces growth and survival of Spodoptera litura (Lepidoptera: Noctuidae). Environ Sci Pollut 26:14426–14434

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International Zinc Association and International Fertilizer Industry Association, Brussels

    Google Scholar 

  • Alyokhin A, Porter G, Groden E, Drummond F (2005) Colorado potato beetle response to soil amendments: a case in support of the mineral balance hypothesis? Agric Ecosyst Environ 109:234–244

    Article  Google Scholar 

  • Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C (2019) A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci 10:1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Marschner H, Bangerth F (1989) Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). J Exp Bot 40:405–412

    Article  CAS  Google Scholar 

  • Capinera J (2008) Maize (Corn) pests and their management. In: Capinera J (ed) Encyclopedia of Entomology. Springer, Dordrecht

    Chapter  Google Scholar 

  • Cheruiyot DJ, Boyd RS, Moar WJ (2013) Exploring lower limits of plant elemental defense by cobalt, copper, nickel, and zinc. J Chem Ecol 39:666–674

    Article  CAS  PubMed  Google Scholar 

  • Christensen RHB (2018) ordinal - Regression models for ordinal data. Version 2018.8–25URL. www.cran.r-project.org/package=ordinal. Accessed 27 Feb 2020

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A Review Agron Sustain Dev 28:33–46

    Article  CAS  Google Scholar 

  • Eckert D, Sims JT (2011) Recommended soil pH and lime requirement tests. In: Sims JT, Wolf A (eds) Recommended soil testing procedures for the Northeastern United States. Northeast regional bulletin #493, 3rd edn. Agricultural Experiment Station, University of Delaware, Newark, pp 19–25

    Google Scholar 

  • George E, Horst WJ, Neumann E (2012) Adaptations of plants to adverse chemical soil conditions. In: Marschner H (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier Science & Technology, Oxford, pp 409–472

    Chapter  Google Scholar 

  • Graham RD, Webb MJ (1991) Micronutrients and disease resistance and tolerance in plants. In: Mortvedt JJ (ed) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 329–370

    Google Scholar 

  • Helfenstein J, Pawlowski ML, Hill CB, Bowen CR, Frossard E, Hartman GL (2015) Zinc deficiency alters soybean susceptibility to pathogens and pests. J Soil Sci Plant Nutr 178:896–903

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agri Exper Stn Circ 347:1–32

    Google Scholar 

  • Horneck DA, Miller RO (1998) Determination of total nitrogen in plant tissue. In: Kalra Y (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton

    Google Scholar 

  • Hossain MA, Jahiruddin M, Khatun F (2011) Response of maize varieties to zinc fertilization. Bangladesh J Agr Res 36:437–447

    Article  Google Scholar 

  • Huang C-YL, Schulte EE (1985) Digestion of plant tissue for analysis by ICP emission spectroscopy. Commun Soil Sci Plant Ana 16:943–958

    Article  CAS  Google Scholar 

  • Kafel A, Rozpędek K, Szulińska E, Zawisza-Raszka A, Migula P (2014) The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ Sci Pollut 21:4705–4715

    Article  CAS  Google Scholar 

  • Kanwal S, Rahmatullah AMR, Ahmad R (2010) Zinc partitioning in maize grain after soil fertilization with zinc sulfate. Int J Agric Biol 12:299–302

    CAS  Google Scholar 

  • Manzeke GM, Mtambanengwe F, Nezomba H, Mapfumo P (2014) Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crops Res 166:128–136

    Article  Google Scholar 

  • Mardani-Talaee M, Nouri-Ganblani G, Razmjou J, Hassanpour M, Naseri B, Asgharzadeh A (2016a) Effects of chemical, organic and bio-fertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 109:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Mardani-Talaee M, Zibaee A, Nouri-Ganblani G, Razmjou J (2016b) Chemical and organic fertilizers affect physiological performance and antioxidant activities in Myzus persicae (Hemiptera: Aphididae). Isj-Invert Surviv J 13:122–133

    Google Scholar 

  • Mardani-Talaee M, Razmjou J, Nouri-Ganbalani G, Hassanpour M, Naseri B (2017) Impact of chemical, organic and bio-fertilizers application on bell pepper, Capsicum annuum L. and biological parameters of Myzus persicae (Sulzer) (Hemiptera: Aphididae). Neotrop Entomol 46:578–586

    Article  CAS  PubMed  Google Scholar 

  • Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ (ed) SSSA book series. Soil Science Society of America, Madison, pp 549–592

    Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Evol Syst 11:119–161

    Article  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. In: Lal R, Stewart BA (eds) Soil restoration. Springer, New York, pp 1–56

    Google Scholar 

  • Murrell EG, Cullen EM (2014) Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera:Crambidae) larval performance. Environ Entomol 43:1264–1274

    Article  CAS  PubMed  Google Scholar 

  • Nichols BA, Hopkins BG, Jolley VD, Greenwood BG, Buck JR (2012) Phosphorus and zinc interactions and their relationships with other nutrients in maize grown in chelator-buffered nutrient solution. J Plant Nutr 35:123–141

    Article  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan. Accessed 11 Feb 2020

  • Padhee AK, Misra DS (1993) Influence of zinc application on the influence of rice leafhopper, Cnaphalocrocis medinalis Guenee. Indian J Entomol 55:335–337

    Google Scholar 

  • Phelan PL (1997) Soil-management history and the role of plant mineral balance as a determinant of maize susceptibility to the European Corn Borer. Biol Agric Hortic 15:25–34

    Article  Google Scholar 

  • Phelan PL, Norris KH, Mason JF (1996) Soil-management history and host preference by Ostrinia nubilalis: Evidence for plant mineral balance mediating insect–plant interactions. Environ Entomol 25:1329–1336

    Article  Google Scholar 

  • Popham HJR, Shelby KS (2006) Uptake of dietary micronutrients from artificial diets by larval Heliothis virescens. J Insect Physiol 52:771–777

    Article  CAS  PubMed  Google Scholar 

  • Potarzycki J, Grzebisz W (2009) Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ 55:519–527

    Article  CAS  Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. Version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 11 Feb 2020

  • Rehm GW (2005) Sulfur management for corn growth with conservation tillage. SSSAJ 69:709–717

    Article  CAS  Google Scholar 

  • Rezaei M, Abbasi H (2014) Foliar application of nano-chelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iran J Plant Physiol 4:1137–1144

    Google Scholar 

  • Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelas J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci USA 109:4181–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen JA, Pike CS, Golden ML (1977) Zinc, iron, and chlorophyll metabolism in zinc-toxic corn. Plant Physiol 59:1085–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross D, Ketterings Q (2011) Recommended soil tests for determining soil cation exchange capacity. In: Sims JT, Wolf A (eds) Recommended soil testing procedures for the Northeastern United States Northeast regional bulletin #493, 3rd edn. Agricultural Experiment Station, University of Delaware, Newark, pp 75–86

    Google Scholar 

  • Rowen E, Tooker JF (2019) Fertilizing corn with manure decreases caterpillar performance but increases slug damage. Environ Entomol 49:141–150

    Article  CAS  Google Scholar 

  • Sarwar M (2011) Effects of zinc fertilizer application on the incidence of rice stem borers (Scirpophaga species) (Lepidoptera: Pyralidae) in rice (Oryza sativa L.) crop. J Cereals Oilseeds 2:61–65

    CAS  Google Scholar 

  • Sawyer JE, Lang BJ, Barker DW (2011) Sulfur fertilization response in Iowa corn production. Agronomy Publications 62. https://lib.dr.iastate.edu/agron_pubs/62. Accessed 26 Feb 2021

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Shephard AM, Brown NS, Snell-Rood EC (2022) Anthropogenic zinc exposure increases mortality and antioxidant gene expression in Monarch butterflies with low access to dietary macronutrients. Environ Toxicol Chem 41:1286–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Gao Y, Sun H, Zou Z, Zhou Q, Zhang G (2009) Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol Environ Saf 72:2130–2136

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press

    Google Scholar 

  • Swiney KM, Long WC, Foy RJ (2016) Effects of high pCO2 on Tanner crab reproduction and early life history—Part I: long-term exposure reduces hatching success and female calcification, and alters embryonic development. ICES J Mar Sci 73:825–835

    Article  Google Scholar 

  • Toepfer S, Fallet P, Kajuga J, Bazagwira D, Mukundwa IP, Szalai M, Turlings TCJ (2021) Streamlining leaf damage rating scales for the fall armyworm on maize. J Pest Sci. https://doi.org/10.1007/s10340-021-01359-2

    Article  Google Scholar 

  • USDA NASS (2019) Quick Stats 2.0. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington DC. https://quickstats.nass.usda.gov/. Accessed 11 Feb 2020

  • USDA Economic Research Service (2019) Fertilizer use and price. Ag Data Commons. https://data.nal.usda.gov/dataset/fertilizer-use-and-price. Accessed 1 Apr 2020

  • USEPA (1986) Test methods for evaluating solid waste. Volume 1A: 3rd Edition. EPA/SW-846. National Technical Information Service. Springfield, Va

  • Viets FG (1962) Micronutrient availability, chemistry and availability of micronutrients in soils. J Agric Food Chem 10:174–178

    Article  CAS  Google Scholar 

  • von Liebig JF (1842) Animal chemistry: or, organic chemistry in its application to physiology and pathology. Taylor and Walton, Cambridge

    Book  Google Scholar 

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60:11–26

    Article  Google Scholar 

  • White JG, Welch RM, Norvell WA (1997) Soil zinc map of the USA using geostatistics and geographic information systems. SSSAJ 61:185–194

    Article  CAS  Google Scholar 

  • Wolf AM, Beegle DB (2011) Recommended soil tests for macronutrients. In: Sims JT, Wolf A (eds) Recommended Soil Testing Procedures for the Northeastern United States. Northeast Regional Bulletin #493, 3rd edn. Agricultural Experiment Station, University of Delaware, Newark, pp 39–47

    Google Scholar 

Download references

Acknowledgements

We would like to thank Austin Kirt for farm management, Hayden Bock, Lewis Hahn, and Roman Nakielny for assistance in the greenhouse and field, and Armen Kemanian, Mary Ann Bruns, Carlos Quesada, and Mary Barbercheck for comments on this manuscript. Funding for this project came from USDA NIFA pre-doctoral fellowship Award to E.R. 2018-67011-28012, and the College of Agricultural Sciences at Penn State via the National Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04606 and Accession #1009362.

Author information

Authors and Affiliations

Authors

Contributions

ER and JT: Designed experiments. ER: Conducted experiments and data analyses. ER and JT: Wrote manuscript.

Corresponding author

Correspondence to Elizabeth K. Rowen.

Ethics declarations

Conflict of interest

J.F. Tooker is an Associate Editor for Arthropod-Plant Interactions.

Additional information

Handling Editor: Michelle Amy Rafter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 119 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowen, E.K., Tooker, J.F. The effect of zinc fertilizer on maize growth, leaf mineral nutrition, and caterpillar herbivory. Arthropod-Plant Interactions 16, 525–535 (2022). https://doi.org/10.1007/s11829-022-09904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-022-09904-1

Keywords

Navigation