Skip to main content
Log in

Changes in the free phenolic acid composition of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) infestation

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Aphids are considered one of the most damaging pests in agriculture. Plants respond to aphid attack with the production of toxic, repellent and/or antinutritive metabolites, including phenolic compounds. In this study, we examined the free phenolic acid composition of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) feeding in different time course experiments. When plants were infested with an initial low density of aphids (20 aphids/plant), few significant changes were shown in leave phenolic content suggesting a very slight response from plants. However, with a high density of aphids (200 aphids/plant), several phenolics, especially the cinnamic acids (C6-C3): caffeic acid, p-coumaric acid, and sinapic acid, and also the p-hydroxybenzoic acid, salicylic acid, accumulated at specific times. Conversely, another hydroxy-benzoic acid: protocatechuic acid strongly decreased in response to infestation. The possible role of the observed changes in plant defence responses or in aphid counter-defence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arimboor R, Kumar KS, Arumughan C (2008) Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD. J Pharm Biomed Anal 47:31–38

    CAS  PubMed  Google Scholar 

  • Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51

    CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    CAS  PubMed  Google Scholar 

  • Chrzanowski G, Leszczynski B, Czerniewicz P, Sytykiewicz H, Matok H, Krzyzanowski R, Sempruch C (2012) Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Prot 35:71–77

    CAS  Google Scholar 

  • Ciepiela AP, Chrzanowski G (1999) Content of phenolic compounds in winter triticale of different resistance to grain aphid. Ann Agr Sci Ser 28:23–27

    CAS  Google Scholar 

  • Ciepiela AP, Chrzanowski G (2001) Accumulation of ferulic, gallic, o-coumaric and salicylic acid in winter triticale of different resistance to grain aphid (Sitobion avenae F., Homoptera: Aphididae). Aphids Other Homopterous Insects 8:205–212

    Google Scholar 

  • Coppola V, Coppola M, Rocco M, Digilio MC, D’Ambrosio C, Renzone G, Martinelli R, Scaloni A, Pennacchio F, Rao R, Corrado G (2013) Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics 14:515. https://doi.org/10.1186/1471-2164-14-515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czerniewicz P, Leszczynski B, Chrzanowski G, Sempruch C, Sytykiewicz H (2011) Effects of host plant phenolics on spring migration of bird cherry-oat aphid (Rhopalosiphum padi L.). Allelopath J 27:309–316

    Google Scholar 

  • Czerniewicz P, Chrzanowski G, Sytykiewicz H, Sprawka I, Leszczynski B (2016) Aphidicidal and deterrent activity of phenolic acid extracts from some herbal plants towards Myzus persicae Sulz. and Rhopalosiphum padi L. Fresen Environ Bull 25:5714–5721

    CAS  Google Scholar 

  • Czerniewicz P, Sytykiewicz H, Durak R, Borowiak-Sobkowiak B, Chrzanowski G (2017) Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol Biochem 118:529–540

    CAS  PubMed  Google Scholar 

  • Dar SA, Rather BA, Wani AR, Ganie MA (2017) Resistance against insect pests by plant phenolics and their derivative compounds. Chem Sci Rev Lett 6:1941–1949

    CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    CAS  PubMed  Google Scholar 

  • Dixit G, Praveen A, Tripathi T, Yadav VK, Verma PC (2017) Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. J Asia Pac Entomol 20:341–351. https://doi.org/10.1016/j.aspen.2017.02.002

    Article  Google Scholar 

  • Dreyer DL, Jones KC (1981) Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: aphid feeding deterrents in wheat. Phytochemistry 20:2489–2493

    CAS  Google Scholar 

  • Florencio-Ortiz V, Sellés-Marchart S, Zubcoff-Vallejo J, Jander G, Casas JL (2018a) Changes in the free amino acid composition of Capsicum annuum (pepper) leaves in response to Myzus persicae (green peach aphid) infestation. A comparison with water stress. PLoS ONE 13(6):e0198093. https://doi.org/10.1371/journal.pone.0198093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florencio-Ortiz V, Novák O, Casas JL (2018b) Local and systemic hormonal responses in pepper (Capsicum annuum L.) leaves under green peach aphid (Myzus persicae Sulzer) infestation. J Plant Physiol 231:356–363

    CAS  PubMed  Google Scholar 

  • Florencio-Ortiz V, Novák O, Casas JL (2020) Phytohormone responses in pepper (Capsicum annuum L.) leaves under a high density of aphid infestation. Physiol Plant 170:519–527

    CAS  PubMed  Google Scholar 

  • Florencio-Ortiz V, Sellés-Marchart S, Casas JL (2021) Proteome changes in pepper (Capsicum annuum L.) leaves induced by the green peach aphid (Myzus persicae Sulzer). BMC Plant Biol 21:12. https://doi.org/10.1186/s12870-020-02749-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantner M, Najda A, Piesik D (2019) Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Prot Sci. https://doi.org/10.17221/150/2017-PPS

    Article  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain J-L (2010) Compatible plant aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    PubMed  Google Scholar 

  • Goławska S, Łukasik I (2012) Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. Pest Sci 85:443–450

    Google Scholar 

  • Guerrieri E, Digilio MC (2008) Aphid-plant interactions: a review. J Plant Interact 3:223–232

    Google Scholar 

  • Gruz J, Novák O, Strnad M (2008) Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem 111:789–794

    CAS  Google Scholar 

  • Han Y, Wang Y, Bi J-L, Yang X-Q, Huang Y, Zhao X, Hu Y, Cai Q-N (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol 35:176–182

    CAS  PubMed  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang W, Liu Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 68:687–693

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Google Scholar 

  • Islam MT, Lee B-R, La VH, Lee H, Jung W-J, Bae D-W, Kim T-H (2019) p-Coumaric acid induces jasmonic acid-mediated phenolic accumulation and resistance to black rot disease in Brassica napus. Physiol Mol Plant Pathol 106:270–275

    CAS  Google Scholar 

  • Lattanzio V, Arpaia S, Cardinali A, Di Venere D, Linsalata V (2000) Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J Agric Food Chem 48:5316–5320

    CAS  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Kerala, pp 24–67

    Google Scholar 

  • Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum. Plant Physiol 150:1567–1575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leszczyński B, Warchoł J, Niraz S (1985) The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Insect Sci Appl 6:157–158

    Google Scholar 

  • Li Q, Xie Q-G, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant-Microbe Interact 19:655–664

    CAS  PubMed  Google Scholar 

  • Louis J, Shah J (2013) Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 1:213. https://doi.org/10.3389/fpls.2013.00213

    Article  CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007a) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316

    CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007b) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    CAS  PubMed  Google Scholar 

  • Mai VC, Bednarski W, Borowiak-Sobkowiak B, Wilkaniec B, Samardakiewicz S, Morkunas I (2013) Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry 93:49–62

    CAS  PubMed  Google Scholar 

  • Martinez de Ilarduya O, Xie Q, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant-Microbe Interact 16:699–708

    CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Mohase L, Van der Westhuizen AJ (2002) Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J Plant Physiol 159:585–590

    CAS  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morkunas I, Mai VC, Gabrys B (2011) Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant 33:2057–2073

    CAS  Google Scholar 

  • Niu L, Pan L, Zeng W, Lu Z, Cui G, Fan M, Xu Q, Wang Z, Li G (2018) Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genomics 19:846. https://doi.org/10.1186/s12864-018-5215-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin QJ, Shi XY, Liang P, Gao XW (2005) Induction of phenylalanine ammonia-lyase and lipoxygenase in cotton seedlings by mechanical wounding and aphid infestation. Prog Nat Sci 5:419–423

    Google Scholar 

  • Reis-Giada ML (2013) Food Phenolic compounds: main classes, sources and their antioxidant power. In: Morales-Gonzalez JA (ed) Oxidative stress and chronic degenerative diseases. IntechOpen, London

    Google Scholar 

  • Riaz U, Kharal MA, Murtaza G, Zaman Q, Javaid S, Malik HA, Aziz H, Abbas Z (2019) Prospective roles and mechanisms of caffeic acid in counter plant stress: a mini review. Pak J Agric Res 32(1):8–19

    Google Scholar 

  • Russell W, Duthie C (2011) Plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc 70:389–396

    CAS  PubMed  Google Scholar 

  • Saguez J, Giordanengo P, Vicent C (2013) Aphids as major potato pest. In: Giordanengo P, Vicent C, Alyokhin A (eds) Insect pests of potato. Elsevier, Oxford, pp 31–63

    Google Scholar 

  • Simon JC, Peccoud J (2018) Rapid evolution of aphid pests in agricultural environments. Curr Opin Insect Sci 26:17–24

    PubMed  Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    CAS  Google Scholar 

  • Sorensen JT (2009) Aphids. In: Resh VH, Cardé RT (eds) Encyclopedia of Insects. Elsevier, Oxford, pp 27–31

    Google Scholar 

  • van Bel AJE, Will T (2016) Functional evaluation of proteins in watery and gel saliva of aphids. Front Plant Sci 7:1840. https://doi.org/10.3389/fpls.2016.01840

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    PubMed  PubMed Central  Google Scholar 

  • War AR, Paulraj MG, Ignacimuthu S, Sharma HC (2013) Defensive responses in groundnut against chewing and sap-sucking insects. J Plant Growth Regul 32:259–272

    CAS  Google Scholar 

  • Wójcicka A (2010) Cereal phenolic compounds as biopesticides of cereal aphids. Pol J Environ Stud 19:1337–1343

    Google Scholar 

  • Yan H-Y, Guo H-G, Sun Y-C, Ge F (2018) Plant phenolics mediated bottom-up effects of elevated CO2 on Acyrthosiphonpisum and its parasitoid Aphidius avenae. Insect Sci 27:170–184. https://doi.org/10.1111/1744-7917.12627

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Wang D, Gao X, Yue Z, Zhou H (2020) Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci Hortic 268:109348. https://doi.org/10.1016/j.scienta.2020.109348

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ministerio de Economía y Competitividad (Project CGL2016-79054-R), by University of Alicante grant (UAFPU2013-5793) to VFO, by the Czech Science Foundation (No. 19-00973S) and by ERDF project “Development of pre-applied research in nanotechnogy and biotechnology” (No. CZ.02.1.01/0.0/0.0/17_048/0007323). The present work is part of VFO PhD Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Florencio-Ortiz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florencio-Ortiz, V., Gruz, J. & Casas, J.L. Changes in the free phenolic acid composition of pepper (Capsicum annuum L.) leaves in response to green peach aphid (Myzus persicae Sulzer) infestation. Arthropod-Plant Interactions 15, 329–336 (2021). https://doi.org/10.1007/s11829-021-09820-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-021-09820-w

Keywords

Navigation