Skip to main content
Log in

Leaf herbivory modulates fruit trait correlations within individual plants

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant performance is based on the relationship between resource acquisition and allocation to complete essential functions. Herbivory causes compromises in resource allocation that impact at the plant and within-plant (sub-individual) levels. This impacts fruit display traits which in turn affect reproductive success and seed dispersal. Because leaf damage affects resource allocation, herbivory should modulate the relationship between fruit display traits. We explore the relation between the level of leaf herbivory (mean damage and coefficient of variation) and fruit display traits in Vassobia breviflora (Solanaceae). According to trait function, we explore relationships between reproductive traits (seed number and weight), reward traits (sugar concentration, pulp weight), and relationships between reproductive and reward traits. We found no effect of herbivory on the correlation between reproductive traits, but an effect was found on the correlation between rewards traits. In conclusion, herbivory affects the correlation between fruit traits, and the magnitude and direction of the association between traits vary according to the magnitude and variation of the damage at the within-plant level. In evolutionary terms, our results suggest that within-plant variation in leaf traits would constitute a strategy to resolve allocation conflicts derived from damage and to maintain fruit display characteristics that favor the interaction with seed dispersers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AA, Lau A, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376

    PubMed  Google Scholar 

  • Anton AM, Zuloaga FO (2013) Recuperado de. https://www.floraargentina.edu.ar/

  • Arceo-Gómez G, Vargas CF, Parra-Tabla V (2017) Selection on intra-individual variation in stigma-anther distance in the tropical tree Ipomoea wolcottiana (Convolvulaceae). Plant Biol 19:454–459

    PubMed  Google Scholar 

  • Armbruster WS, Schwaegerle KE (1996) Causes of covariation of phenotypic traits among populations. J Evol Biol 9:261–276

    Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145

    CAS  Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. Bioscience 37:58–67

    Google Scholar 

  • Bernacki FG (2014) Biología floral y frutal de Vassobia breviflora (Sedtn.) Hunz. (Solanaceae) en el noroeste argentino (Tesis de licenciatura). Universidad Nacional de Tucumán, Argentina.

  • Bernacki FG, Albornoz P, Valoy M, Ordano M (2015) Anatomía de flor y fruto de Vassobia breviflora (Solanaceae) en el sur de las Yungas Australes (Argentina). Phyton 82:478–487

    Google Scholar 

  • Bianchi AR, Yáñez CE (1992) Las precipitaciones en el Noroeste Argentino, (segunda edición). INTA, EEA, Salta

    Google Scholar 

  • Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM (2013) Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front Plant Sci 4:177

    PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants-an economic analogy. Annu Rev Ecol Evol Syst 16:363–392

    Google Scholar 

  • Brancalion PHS, Rodrigues RR (2014) Seed size-number trade-off in Euterpe edulis in plant communities of the atlantic forest. Sci Agric 71:226–231

    Google Scholar 

  • Brennan EB, Weinbaum SA, Rosenheim JA, Karban R (2001) Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environ Entomol 30:1144–1149

    Google Scholar 

  • Cabrera AL (1979) Solanaceae. In: Burkart A (ed) Flora ilustrada de entre ríos V Buenos Aires (Argentina). Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 346–452

    Google Scholar 

  • Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585

    PubMed  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Google Scholar 

  • de Santillán AS, de Santamarina EB, Ricci TR, Würschmidt EJ (1967) La región de las sierras del nordeste de la provincia de Tucumán. Universidad Nacional de Tucumán, Tucumán

    Google Scholar 

  • de Vries J, Evers JB, Dicke M, Poelman EH (2019) Ecological interactions shape the adaptive value of plant defence: herbivore attack versus competition for light. Funct Ecol 33:129–138

    PubMed  Google Scholar 

  • Digilio AP, Legname PR (1966) Los árboles indígenas de la provincia de Tucumán. Opera Lilloana 15:1–107

    Google Scholar 

  • Erb M (2018) Plant defenses against herbivory: closing the fitness gap. Trends Plant Sci 23:187–194

    CAS  PubMed  Google Scholar 

  • Eriksson O (1999) Seed size variation and its effects on germination and seedling performance in the clonal herb Convallaria majalis. Acta Oecol 20:61–66

    Google Scholar 

  • Esteve-Altava B (2017) In search of morphological modules: a systematic review. Biol Rev 92:1332–1347

    PubMed  Google Scholar 

  • Fenner M (1992) Environmental influences on seed size and composition. Hortic Rev 13:183–213

    CAS  Google Scholar 

  • Fornoni J, Núñez-Farfán J, Valverde PL, Rausher MD (2004) Evolution of mixed strategies of plant defense allocation against natural enemies. Evolution 58:1685–1695

    PubMed  Google Scholar 

  • Gómez JM (2003) Herbivory reduces the strength of pollinator-mediated selection in the Mediterranean herb Erysimum mediohispanicum: consequences for plant specialization. Am Nat 162:242–256

    PubMed  Google Scholar 

  • Harper DGC (2006) Maynard Smith: amplifying the reasons for signal reliability. J Theor Biol 239:203–209

    CAS  PubMed  Google Scholar 

  • Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuate. I. Large-scale changes in the accumulation of growth-and defense-related plant mRNAs. Plant Physiol 125:683–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera CM (2009) Multiplicity in unity: plant subindividual variation and interaction with animals. The University of Chicago Press, Chicago

    Google Scholar 

  • Herrera CM (2017) The ecology of subindividual variability in plants: patterns, processes, and prospects. Web Ecol 17:51–64

    Google Scholar 

  • Honêk A, Martinková Z (2002) Factors of between—and within—plant distribution of Metopolophium dirhodum (Homoptera: Aphididae) on small grain cereals. J Appl Entomol 126:378–383

    Google Scholar 

  • Horvitz CC, Schemske DW (2002) Effects of plant size, leaf herbivory, local competition and fruit production on survival, growth and future reproduction of a neotropical herb. J Ecol 90:279–290

    Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin RE, Adler LS (2006) Correlations among traits associated with herbivore resistance and pollination: implications for pollination and nectar robbing in a distylous plant. Am J Bot 93:64–72

    Google Scholar 

  • Janzen DH (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54:687–708

    Google Scholar 

  • Jordano P (1995) Frugivore-mediated selection on fruit and seed size: birds and St. Lucie's cherry Prunus mahaleb. Ecology 76:2627–2639

    Google Scholar 

  • Junker RR, Kuppler J, Amo L, Blande JD, Borges RM, van Dam NM et al (2017) Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoevolutionary implications. New Phytol. https://doi.org/10.1111/nph.14505

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Google Scholar 

  • Koenig WD, Knops JM, Carmen WJ, Sage RD (2009) No trade-off between seed size and number in the valley oak Quercus lobata. Am Nat 173:682–688

    PubMed  Google Scholar 

  • Lázaro A, Larrinaga AR (2018) A multi-level test of the seed number/size trade-off in two Scandinavian communities. PLoS ONE 13:e0201175

    PubMed  PubMed Central  Google Scholar 

  • Lehtilä K, Strauss SY (1999) Effects of foliar herbivory on male and female reproductive traits of wild radish, Raphanus raphanistrum. Ecology 80:116–124

    Google Scholar 

  • Lomáscolo SB, Levey DJ, Kimball RT, Bolker BM, Halborn HT (2010) Dipersers shape fruit diversity in Ficus (Moraceae). PNAS 107:14668–14672

    PubMed  Google Scholar 

  • Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15:63–76

    CAS  Google Scholar 

  • Mauricio R (2000) Natural selection and the joint evolution of tolerance and resistance as plant defenses. Evol Ecol 14:491–507

    Google Scholar 

  • Meyer ST, Roces F, Wirth R (2006) Selecting the drought stressed: effects of plant stress on intraspecific and within-plant herbivory patterns of the leafcutting ant Atta colombica. Funct Ecol 20:973–981

    Google Scholar 

  • Minetti JL, Poblete GA, Longhi F (2005) Los mesoclimas del Noroeste Argentino. In: Minetti JL (ed) El Clima del Noreste Argentino. Laboratorio Climatológico Sudamericano, Fundación Carl C, Zon Caldenius, pp 217–234

    Google Scholar 

  • Murray KG (1987) Selection for optimal fruit-crop size in bird-dispersed plants. Am Nat 129:18–31

    Google Scholar 

  • Murren CJ (2002) Phenotypic integration in plants. Plant Species Biol 17:89–99

    Google Scholar 

  • Murren CJ, Julliard R, Schlichting CD, Clobert J (2001) Dispersal, individual phenotype, and phenotypic plasticity. In: Clobert J, Danchin E, Dhondt AA, Nichols J (eds) Dispersal. Oxford University Press, Oxford, pp 261–272

    Google Scholar 

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566

    Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348

    Google Scholar 

  • Ordano M, Blendinger PG, Lomáscolo SB, Chacoff NP, Sánchez MS, Núñez Montellano MG, Jiménez J, Ruggera R, Valoy M (2017) The role of trait combination in the conspicuousness of fruit display among bird dispersed plants. Funct Ecol 31:1718–1727

    Google Scholar 

  • Palacio FX, Ordano M (2018) The strength and drivers of bird-mediated selection on fruit crop size: a meta-analysis. Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00018

    Article  Google Scholar 

  • Palacio FX, Lacoretz M, Ordano M (2014) Bird-mediated selection on fruit display traits in Celtis ehrenbergiana (Cannabaceae). Evol Ecol Res 16:51–62

    Google Scholar 

  • Palacio FX, Valoy M, Bernacki FG, Sánchez MS, Núñez-Montellano MG, Varela O, Ordano M (2017) Bird fruit consumption results from the interaction between fruit-handling behaviour and fruit crop size. Ethol Ecol Evol 29:24–37

    Google Scholar 

  • Pérez Miranda C (2003). Tucumán y los Recursos Naturales. Biodiversidad. Los recursos silvestres, los ambientes naturales y las áreas protegidas. Gobierno de la Provincia de Tucumán, EPDA PROSAP, Programa de Servicios agrícolas provinciales Bifronte SRL. Buenos Aires, pp 408

  • Pigliucci M (2003) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol Lett 6:265–272

    Google Scholar 

  • Pigliucci M, Preston K (2004) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, New York

    Google Scholar 

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003) Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135:601–605

    PubMed  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Rasband W (1997) ImageJ 1.4. NIH, Bethesda

  • Redman AM, Cipollini DF, Schultz JC (2001) Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385

    PubMed  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    CAS  PubMed  Google Scholar 

  • Saint-Hilaire EG (1818) Philosophie anatomique. JB. Bailliere, Paris

    Google Scholar 

  • Sánchez-Humanes B, Sork VL, Espelta JM (2011) Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy. Oecologia 166:101–110

    PubMed  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Google Scholar 

  • Schlinkert H, Westphal C, Clough Y, Grass I, Helmerichs J, Tscharntke T (2016) Plant size affects mutualistic and antagonistic interactions and reproductive success across 21 Brassicaceae species. Ecosphere 7:e01529

    Google Scholar 

  • Schultz JC, Appel HM, Ferrieri A, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:324

    PubMed  PubMed Central  Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton AL (2004) Variation in chemical defenses of plants may improve the effectiveness of defense. Evol Ecol Res 6:709–726

    Google Scholar 

  • Snow DW (1971) Evolutionary aspects of fruit eating by birds. IBIS 113:194–202

    Google Scholar 

  • Sobral MA, Larrinaga AR, Guitián J (2010) Do seed-dispersing birds exert selection on optimal plant trait combinations? Correlated phenotypic selection on the fruit and seed size of hawthorn (Crataegus monogyna). Evol Ecol 24:1277–1290

    Google Scholar 

  • Sobral M, Guitián J, Guitián P, Larrinaga AR (2013) Selective pressure along a latitudinal gradient affects subindividual variation in plants. PLoS ONE 8:e74356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobral M, Guitián J, Guitián P, Violle C, Larrinaga AR (2019) Exploring subindividual variability: role of ontogeny, abiotic environment and seed dispersing birds. Plant Biol 21(4):688–694

    CAS  PubMed  Google Scholar 

  • Stephens AE, Westoby M (2015) Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. Oikos 124:266–273

    Google Scholar 

  • Steppuhn A, Baldwin IT (2008) Induced defenses and the cost-benefit paradigm. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 61–68

    Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    CAS  PubMed  Google Scholar 

  • Strauss SY, Armbruster WS (1997) Linking herbivory and pollination-new perspectives on plant and animal ecology and evolution. Ecology 78:1617–1618

    Google Scholar 

  • Taura HM, Laroca S (2004) Biologia da polinização: interações entre as abelhas (Hym., Apoidea) e as flores de Vassobia breviflora (Solanaceae) [Pollination biology: interactions between bees and flowers of Vassobia breviflora (Solanaceae)]. Acta Biol Parana 33:143–162

    Google Scholar 

  • Torices R, Méndez M (2014) Resource allocation to inflorescence components is highly integrated despite differences between allocation currencies and sites. Int J Plant Sci 175:713–723

    Google Scholar 

  • Valido A, Schaefer HM, Jordano P (2011) Colour, design and reward: phenotypic integration of fleshy fruit displays. J Evol Biol 24:751–760

    CAS  PubMed  Google Scholar 

  • Valoy M, Ordano M, Bernacki F, Palacio FX, López-Acosta JC, Varela O (2018) Patrones de herbivoría en Vassobia breviflora (Solanaceae): variación en el daño foliar y selección natural mediada por herbívoros. Rev Biol Trop 66:1683–1700

    Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Google Scholar 

  • Vaughton G, Ramsey M (1998) Sources and consequences of seed mass variation in Banksia marginata (Proteaceae). J Ecol 86:563–573

    Google Scholar 

  • Vaughton G, Ramsey M (2001) Relationships between seed mass, seed nutrients, and seedling growth in Banksia cunninghamii (Proteaceae). Int J Plant Sci 162:599–606

    CAS  Google Scholar 

  • Volis S (2016) Seed heteromorphism in Triticum dicoccoides: association between seed positions within a dispersal unit and dormancy. Oecologia 181:401–412

    PubMed  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Syst 6:207–215

    Google Scholar 

  • Wenk EH, Falster DS (2015) Quantifying and understanding reproductive allocation schedules in plants. Ecol Evol 5:5521–5538

    PubMed  PubMed Central  Google Scholar 

  • Whippo CW, Hangarter RP (2009) The “sensational” power of movement in plants: a Darwinian system for studying the evolution of behavior. Am J Bot 96:2115–2127

    PubMed  Google Scholar 

  • Winn AA (1996) The contributions of programmed developmental change and phenotypic plasticity to within-individual variation in leaf traits in Dicerandra linearifolia. J Evol Biol 9:737–752

    Google Scholar 

  • Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects modelling for nested data. Mixed effects models and extensions in ecology with R. Springer, New York, pp 101–142

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Martín Portal and Plásticos La Rioja. This study was partially funded by Fundación Miguel Lillo (Ministry of Education) and National Council for Scientific and Technical Research (CONICET) of Argentina (PIP 11420110100395 given to M. Ordano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Ordano.

Additional information

Handling Editor: Livy Williams.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valoy, M., López-Acosta, J.C., Lomáscolo, S. et al. Leaf herbivory modulates fruit trait correlations within individual plants. Arthropod-Plant Interactions 14, 373–385 (2020). https://doi.org/10.1007/s11829-020-09740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09740-1

Keywords

Navigation