Does florivory affect the attraction of floral visitors to buzz-pollinated Solanum rostratum?

Abstract

Floral herbivory (florivory) can directly and indirectly affect plant reproduction through the loss of ovules or seeds and by reducing the visitation by pollinators through the reduction in flower attractiveness, respectively. We studied the effect of florivory on pollinator visitation in a buzz-pollinated herb. We used Solanum rostratum as the study model because its specialised morphology, heterantherous flowers that emit floral scents, demands a close association with its pollinators (buzzing bees). We hypothesized that when florivores consume the attractive structures (corolla and rewarding anthers), the pollinators would visit the damaged flowers less often, indirectly affecting S. rostratum reproductive success. Furthermore, we hypothesized that consumption of the reproductive structures (pollinating anther and pistil) would directly affect the plants reproductive success. We conducted observations of three S. rostratum populations in central Mexico. We observed twelve species of florivore consuming S. rostratum flowers. Florivores preferred to consume the attractive structures (corolla) over reproductive structures. However, they preferred to consume the anthers specialised for feeding pollinators over the anthers specialised for pollination. In addition, we recorded floral volatiles emitted by flowers damaged by florivory using solid-phase microextraction coupled with gas chromatography–mass spectrometry. We identified 25 volatile compounds in S. rostratum flowers, mainly aromatic, monoterpene and sesquiterpene compounds. The relative proportions of these compounds differed between undamaged and damaged flowers. Bioassays showed that both legitimate visitors (pollinators) and illegitimate visitors (thieves) visited undamaged flowers more often than flowers damaged by florivores; however, the decrease in visitation frequency did not affect fruit and seed production. In conclusion, the consumption of attractive (corolla) and reward floral structures (feeding anthers) reduced the frequency of visits by pollinators but does not affect S. rostratum reproductive success (fruit and seed set) probably because reproductive structures (pistil and pollinating anthers) are less often consumed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ashman TL (1994) A dynamic perspective on the physiological cost of reproduction in plants. Am Nat 144:300–316

    Google Scholar 

  2. Baldwin IT (2010) Plant volatiles. Curr Biol 20:392–397

    Google Scholar 

  3. Bandeili B, Müller C (2010) Folivory versus florivory–adaptiveness of flower feeding. Naturwissenschaften 97:79–88

    CAS  PubMed  Google Scholar 

  4. Bartkowska MP, Johnston MO (2012) Pollinators cause stronger selection than herbivores on floral traits in Lobelia cardinalis (Lobeliaceae). New Phytol 193:1039–1048

    PubMed  Google Scholar 

  5. Bassett IJ, Munro DB (1985) The biology of Canadian weeds. 78. Solanum carolinenses Dun., and S. rostratum Dunal Can. J Plant Sci 66:977–991

    Google Scholar 

  6. Beck JJ, Porter N, Cook D, Gee WS, Griffith CM, Rands AD, San Román I (2015) In field volatile analysis employing a hand-held portable GC-MS: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem Anal 26:395–403

    CAS  PubMed  Google Scholar 

  7. Bigger DS (1999) Consequences of patch size and isolation for a rare plant: pollen limitation and seed predation. Nat Area J 19:239–244

    Google Scholar 

  8. Bowers KAW (1975) The pollination ecology of Solanum rostratum (Solanaceae). Am J Bot 62:633–638

    Google Scholar 

  9. Breadmore KN, Kirk WDJ (1998) Factors affecting floral herbivory in a limestone grassland. Acta Oecol 19:501–506

    Google Scholar 

  10. Brues CT (1940) Fossil parasitic Hymenoptera of the family Scelionidae from Baltic amber. Proc Am Acad Artes Sci 74:69–90

    Google Scholar 

  11. Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 73–113

    Google Scholar 

  12. Buchmann SL, Hurley JP (1978) Biophysical model for buzz pollination in Angiosperms. J Theor Biol 72:639–657

    CAS  PubMed  Google Scholar 

  13. Burgess KH (1991) Florivory: the ecology of flower feeding insects and their host plants. PhD Thesis, Harvard University, Cambridge, MA

  14. Cardel YJ, Koptur S (2010) Effects of florivory on the pollination of flowers: an experimental field study with a perennial plant. Int J Plant Sci 171:283–292

    Google Scholar 

  15. Cunningham SA (1995) Ecological constraints on fruit initiation by Calyptrogyne ghiesbreghtiana (Arecaceae): floral herbivory, pollen availability, and visitation by pollinating bats. Am J Bot 82:1527–1536

    Google Scholar 

  16. Cunningham SA (2000) Effects of habitat fragmentation on the reproductive ecology of four plant species in mallee woodland. Conserv Biol 14:758–768

    Google Scholar 

  17. Del-Claro K, Guillermo-Ferreira R, Almeida EM, Zardini H, Torezan-Silingardi HM (2013) Ants visiting the post- floral secretions of pericarpial nectaries in Palicourea rigida (Rubiaceae) provide protection against leaf herbivores but not against seed parasites. Sociobiology 60:219–223

    Google Scholar 

  18. Del-Vitto LA, Petenatti EM (2015) Sobre la presencia de Solanum rostratum (Solanaceae) en Sudamérica: una neófita tóxica de gran potencial como maleza. Rev Fac Ciencias Agrar Univ Nac Cuyo 47:109–121

    Google Scholar 

  19. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci 15:167–175

    CAS  PubMed  Google Scholar 

  20. Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect–plant interactions. CRC Press, London, pp 47–81

    Google Scholar 

  21. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  22. Frame D (2003) Generalist flowers, biodiversity and florivory: Implications for angiosperm origins. Taxon 52:681–685

    Google Scholar 

  23. Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    CAS  Google Scholar 

  24. González-Becerril AA (2011) Morfología del androceo de Solanum rostratum (Solanaceae) y presentación de polen en anteras dimórficas. Bacherol thesis, Facultad de Ciencias, UNAM. p 60

  25. Hanley ME, Lamont BB, Armbruster WS (2009) Pollination and plant defense traits covary in Western Australian Hakeas. New Phytol 182:251–260

    PubMed  Google Scholar 

  26. Hargreaves AL, Harder LD, Johnson SD (2009) Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol Rev 84:259–276

    PubMed  Google Scholar 

  27. Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci USA 105:4541–4546

    CAS  PubMed  Google Scholar 

  28. Jesson LK, Kang J, Wagner SL, Barrett SCH, Dengler NG (2003) The development of enantiostyly. Am J Bot 90:183–195

    PubMed  Google Scholar 

  29. Junker RR, Höcherl N, Blüthgen N (2010) Responses to olfactory signals reflect network structure of flower–visitor interactions. J Anim Ecol 79:818–823

    PubMed  Google Scholar 

  30. Karban R, Strauss SY (1993) Effects of herbivores on growth and production of their perennial host, Erigeron glaucus. Ecology 74:39–46

    Google Scholar 

  31. Kelly D, Ladley JJ, Robertson AW, Crowfoot L (2008) Flower predation by Zelleria maculata (Lepidoptera) on Peraxilla mistletoes: effects of latitude and fragmentation, and impact on fruit set. N Z J Ecol 32:186–196

    Google Scholar 

  32. Kessler A, Halitschke R, Poveda K (2011) Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant–pollinator interactions. Ecology 92:1769–1780

    PubMed  Google Scholar 

  33. Knudsen J, Eriksson R, Gershenhon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Google Scholar 

  34. Krupnick GA, Weis AE (1998) Floral herbivore effect on the sex expression of an andromonoecious plant, Isomeris arborea (Capparaceae). Plant Ecol 134:151–162

    Google Scholar 

  35. Krupnick GA, Weis AE, Campbell DR (1999) The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 80:125–134

    Google Scholar 

  36. Kudoh H, Whigham df (1998) The effect of petal size manipulation on pollinator/seed-predator mediated female reproductive success of Hibiscus moscheutos. Oecologia 117:70–79

    PubMed  Google Scholar 

  37. Le Corff J, Agren J, Schemske DW (1998) Floral display, pollinator discrimination, and female reproductive success in two monoecious Begonia species. Ecology 79:1610–1619

    Google Scholar 

  38. Lemoine N (2014) Cheap and effective homemade insect clip cages. http://natelemoine.com/tag/clip-cage/. Accessed 3 Apr 2018

  39. Li JK, Song YP, Xu H, Zhang Y, Zhu J, Tang L (2015) High ratio of illegitimate visitation by small bees severely weakens the potential function of heteranthery. J Plant Ecol 8:213–223

    Google Scholar 

  40. Liao K, Gituru RW, Guo YH, Wang QF (2013) Effects of floral herbivory on foraging behaviour of bumblebees and female reproductive success in Pedicularis gruina (Orobanchaceae). Flora Morphol Distrib Funct Ecol Plants 208:562–569

    Google Scholar 

  41. Lohman DJ, Zangerl AR, Berenbaum MR (1996) Impact of floral herbivory by parsnip webworm (Oecophoridae: Depressaria pastinacella Duponchel) on pollination and fitness of wild parsnip (Apiaceae: Pastinaca sativa L.). Am Midl Nat 136:407–412

    Google Scholar 

  42. Lowenberg GJ (1994) Effects of floral herbivory on maternal reproduction in Sanicula arctopoides (Apiaceae). Ecology 75:359–369

    Google Scholar 

  43. Lowenberg GJ (1997) Effects of floral herbivory, limited pollination, and intrinsic plant characteristics on phenotypic gender in Sanicula arctopoides. Oecologia 109:279–285

    CAS  PubMed  Google Scholar 

  44. Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    CAS  PubMed  Google Scholar 

  45. McCall AC (2008) Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155:729–737

    PubMed  Google Scholar 

  46. McCall AC, Barr CM (2012) Why do florivores prefer hermaphrodites over females in Nemophila menziesii (Boraginaceae)? Oecologia 170:147–157

    PubMed  Google Scholar 

  47. McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    PubMed  Google Scholar 

  48. McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Google Scholar 

  49. Mesquita-Neto JN, Costa BKP, Schlindwein C (2017) Heteranthery as a solution to the demand for pollen as food and for pollination–legitimate flower visitors reject flowers without feeding anthers. Plant Biol 19:942–950

    CAS  PubMed  Google Scholar 

  50. Mothershead K, Marquis RJ (2000) Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Oenothera macrocarpa. Ecology 81:30–40

    Google Scholar 

  51. Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    PubMed  Google Scholar 

  52. Muola A, Weber D, Malm LE, Egan PA, Glinwood R, Parachnowitsch AL, Stenberg JA (2017) Direct and pollinator-mediated effects of herbivory on strawberry and the potential for improved resistance. Front Plant Sci 8:1–10

    Google Scholar 

  53. Nee M (1993) Solanaceae II (III). In: Sosa V (ed) Flora de Veracruz, fasc. Instituto de Ecología, Xalapa, pp 1–158

    Google Scholar 

  54. Nishida R, Shelly TE, Whittier TS, Kaneshiro KY (2000) α-copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata? J Chem Ecol 26:87–100

    CAS  Google Scholar 

  55. Ogle DH (2017) FSA: fisheries stock analysis. R package version 0.8.12

  56. Ohashi K, Yahara T (1998) Effects of variation in flower number on pollinator visits in Cirsium purpuratum (Asteraceae). Am J Bot 85:219–224

    CAS  PubMed  Google Scholar 

  57. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Google Scholar 

  58. Paré P, Tumlinson J (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    PubMed  PubMed Central  Google Scholar 

  59. Parra-Tabla V, Bullock SH (1998) Factors limiting fecundity of the tropical tree Ipomoea wolcottiana (Convolvulaceae) in a Mexican tropical dry forest. J Trop Ecol 14:615–627

    Google Scholar 

  60. Parra-Tabla V, Herrera CM (2010) Spatially inconsistent direct and indirect effects of herbivory on floral traits and pollination success in a tropical shrub. Oikos 119:1344–1354

    Google Scholar 

  61. Pellmyr O, Thompson JN (1996) Sources of variation in pollinator contribution within a guild: the effects of plant and pollinator factors. Oecologia 107:595–604

    PubMed  Google Scholar 

  62. Penet L, Collin CL, Ashman TL (2009) Florivory increases selfing: an experimental study in the wild strawberry, Fragaria virginiana. Plant Biol 11:38–45

    CAS  PubMed  Google Scholar 

  63. R Core Development Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  64. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Google Scholar 

  65. Romero GQ, Vasconcellos-Neto J (2007) Aranhas sobre plantas: dos comportamentos de forrageamento às associações específicas. In: Gonzaga MO, Santos AJ, Japyassú HF (eds) Ecologia e comportamento de aranhas. Interciência, Rio de Janeiro, pp 68–87

    Google Scholar 

  66. Sánchez-Lafuente AM (2007) Corolla herbivory, pollination success and fruit predation in complex flowers: an experimental study with Linaria lilacina (Scro-phulariaceae). Ann Bot 99:355–364

    PubMed  PubMed Central  Google Scholar 

  67. Schaub A, Blande JD, Graus M, Oksanen E, Holopainen JK, Hansel A (2010) Real-time monitoring of herbivore induced volatile emissions in the field. Physiol Plant 138:123–133

    CAS  PubMed  Google Scholar 

  68. Schenk M, Camilleri M, Diakaki M, Vos S (2019) Pest survey card on Epitrix cucumeris, Epitrix papa, Epitrix subcrinita and Epitrix tuberis. EFSA Supporting Publications 16

  69. Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    PubMed  Google Scholar 

  70. Solís-Montero L, Vallejo‐Marín M (2017) Does the morphological fit between flowers and -pollinators affect pollen deposition? An experimental test in a buzz‐pollinated species with anther dimorphism. Ecol Evol 7:2706–2715

    PubMed  PubMed Central  Google Scholar 

  71. Solís-Montero L, Vergara CH, Vallejo-Marín M (2015) High incidence of pollen theft in natural populations of a buzz-pollinated plant. Arthropod Plant Interact 9:599–611

    Google Scholar 

  72. Solís-Montero L, Cáceres-García S, Alavez-Rosas D, García-Crisóstomo JF, Vega-Polanco M, Grajales-Conesa J, Cruz-López L (2018) Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. J Chem Ecol 44:1058–1067

    PubMed  Google Scholar 

  73. Strauss SY, Agrawal AA (1999) Ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    CAS  PubMed  Google Scholar 

  74. Strauss SY, Whitthall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 120–138

    Google Scholar 

  75. Strickler K, Freitas S (1999) Interactions between floral resources and bees (Hymenoptera: Megachilidae) in commercial alfalfa seed fields. Environ Entomol 28:178–187

    Google Scholar 

  76. Tan KH, Nishida R (2012) Methyleugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J Insect Sci 12:1–60

    Google Scholar 

  77. Theis N, Lerdau M, Raguso RA (2007) The challenge of attracting pollinators while evading floral herbivores: patterns of fragrance emission in Cirsium arvense and Cirsium repandum (Asteraceae). Int J Plant Sci 168:587–601

    Google Scholar 

  78. Torezan-Silingardi HM (2011) Predatory behavior of Pachodynerus brevithorax (Hymenoptera: Vespidae, Eumeninae) on endophytic herbivore beetles in the Brazilian tropical savanna. Sociobiology 57:181–190

    Google Scholar 

  79. Tsuji K, Ohgushi T (2018) Florivory indirectly decreases the plant reproductive output through changes in pollinator attraction. Ecol Evol 8:2993–3001

    PubMed  PubMed Central  Google Scholar 

  80. Vallejo-Marín M, Manson JS, Thomson JD, Barrett SCH (2009) Division of labour within flowers: heteranthery, afloral strategy to reconcile contrasting pollen fates. J Evol Biol 22:828–839

    PubMed  Google Scholar 

  81. Vallejo-Marín M, Da Silva EM, Sargent RD, Barrett SCH (2010) Trait correlates and functional significance of heteranthery in flowering plants. New Phytol 188:418–425

    PubMed  Google Scholar 

  82. Vallejo-Marín M, Solís-Montero L, Souto Vilaros D, Lee MYQ (2013) Mating system in mexican populations of the annual herb Solanum rostratum Dunal (Solanaceae). Plant Biol 15:948–954

    PubMed  Google Scholar 

  83. Velloso MDSC, Brito VLGD, Caetano APS, Romero R (2018) Anther specializations related to the division of labor in Microlicia cordata (Spreng.) Cham.(Melastomataceae). Acta Bot Brasil 32:349–358

    Google Scholar 

  84. Wallace DD, O’Dowd DJ (1989) The effect of nutrients and inflorescence damage by insects on fruit-set by Banksia spinulosa. Oecologia 79:482–488

    Google Scholar 

  85. Whalen MD (1979) Taxonomy of Solanum section Androceras. Gentes Herb 11:359–426

    Google Scholar 

  86. Wise MJ, Hébert JB (2010) Herbivores affect natural selection for floral-sex ratio in a field population of horsenettle, Solanum carolinense. Ecology 91:937–943

    PubMed  Google Scholar 

  87. Zangerl AR, Berenbaum MR (2009) Effects of florivory on floral volatile emissions and pollination success in the wild parsnip. Arthropod Plant Interact 3:181–191

    Google Scholar 

  88. Zhang LJ, Lou AR (2008) Pollen limitation in invasive populations of Solanum rostratum and its relationship to population size. J Plant Ecol 8:154–158

    Google Scholar 

  89. Zhao J, Solís-Montero L, Lou A, Vallejo-Marín M (2013) Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae). PLoS ONE 8:e79807

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou HL, Yu ZF, Ye ZW, Su MS (2018) Multiplex analyses of the changes of aromatic compounds during the development of peach fruit using GC-MS and iTRAQ proteomic techniques. Sci Hortic 236:96–105

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Antonio Santiesteban and David Alavez for their help with chemical analysis; the Solís-Montero family for their help during field work; Carlos Vergara and Eduardo Chamé for the taxonomical identification of floral visitors and florivores, respectively. MVP was awarded a scholarship (Grant No. 624348) for masters graduate studies by the Consejo Nacional de Ciencia y Tecnología (CONACYT) and LARI was supported by a visiting researcher scholarship from the Academia Mexicana de Ciencias.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mayumi Vega-Polanco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vega-Polanco, M., Rodríguez-Islas, L.A., Escalona-Domenech, R.Y. et al. Does florivory affect the attraction of floral visitors to buzz-pollinated Solanum rostratum?. Arthropod-Plant Interactions 14, 41–56 (2020). https://doi.org/10.1007/s11829-019-09723-x

Download citation

Keywords

  • Buzz pollination
  • Epitrix
  • Florivory
  • Pollinators
  • Solanum rostratum