Skip to main content

Insects allocate eggs adaptively across their native host plants

Abstract

Finding plants for their eggs is the only parental care shown by many winged insects. Hatched juveniles often feed on one individual plant until gaining the power of flight as adults. Females are therefore predicted to lay more eggs on plants supporting high offspring survival. Many experiments comparing egg-laying and offspring survival across plant species refute this, leading to alternative concepts including ‘enemy free space’, ‘optimal bad motherhood’ and ‘neural constraints’. Whether tested plants have the same geographic origin as the insect is often overlooked. Using 178 oviposition–performance studies, we found when insects and plants share a native range, 83% of insect species associated their eggs with plants conferring highest offspring survival. This was broadly true across insect taxa and for generalists and specialists. Only 57% did so with non-native plants. That females are attracted to hosts with high offspring survival is a well-supported theory that does not necessarily apply to exotic host plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Althoff DM, Fox KA, Frieden T (2014) The role of ecological availability and host plant characteristics in determining host use by the bogus yucca moth Prodoxus decipiens. Ecol Entomol 39:620–626. https://doi.org/10.1111/een.12141

    Article  Google Scholar 

  2. Balagawi S, Drew RAI, Clarke AR (2013) Simultaneous tests of the preference–performance and phylogenetic conservatism hypotheses: is either theory useful? Arthropod Plant Interact 7:299–513. https://doi.org/10.1007/s11829-012-9244-x

    Article  Google Scholar 

  3. Ballabeni P, Wlodarczyk M, Rahier M (2001) Does enemy-free space for eggs contribute to a leaf beetle’s oviposition preference for a nutritionally inferior host plant? Funct Ecol 15:318–324. https://doi.org/10.1046/j.1365-2435.2001.00529.x

    Article  Google Scholar 

  4. Beard JJ, Walter GH (2001) Host plant specificity in several species of generalist mite predators. Ecol Entomol 26:562–570. https://doi.org/10.1046/j.1365-2311.2001.00367.x

    Article  Google Scholar 

  5. Berdegue M, Reitz SR, Trumble JT (1998) Host plant selection and development in Spodoptera exigua: do mother and offspring know best? Entomol Exp Appl 89:57–64. https://doi.org/10.1046/j.1570-7458.1998.00381.x

    Article  Google Scholar 

  6. Berenbaum MR, Feeny PP (2008) Chemical mediation of host-plant specialization: the Papilionid paradigm. In: Tilmon KJ (ed) Specialisation, speciation and radiation. University of California Press, Berkeley

    Google Scholar 

  7. Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892. https://doi.org/10.2307/1941237

    Article  Google Scholar 

  8. Brodbeck BV, Anderson PC, Oden S, Mizell RF (2007) Preference–performance linkage of the xylem feeding leafhopper, Homalodisca vitripennis (Hemiptera: Cicadellidae). Environ Entomol 36:1512–1522. https://doi.org/10.1603/0046-225X(2007)36%5B1512:PLOTXF%5D2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  9. Cardenas AM, Gallardo P (2013) The effects of oviposition site on the development of the wood borer Coraebus florentinus (Coleoptera: Buprestidae). Eur J Entomol 110:135–144. https://doi.org/10.14411/eje.2013.019

    Article  Google Scholar 

  10. Catalogue of Life Global Team (2018) Catalogue of Life http://www.catalogueoflife.org/. Accessed July 2018

  11. Chew FS (1977) Coevolution of pierid butterflies and their cruciferous foodplants. II. The distribution of eggs on potential foodplants. Evolution 31:568–579. https://doi.org/10.1111/j.1558-5646.1977.tb01045.x

    Article  PubMed  Google Scholar 

  12. Courtney SP (1981) Coevolution of pierid butterflies and their cruciferous foodplants. III. Anthocharis cardamines (L.). Survival, development and oviposition on different hostplants. Oecologia 51:91–96. https://doi.org/10.1007/BF00344658

    Article  PubMed  Google Scholar 

  13. Courtney SP (1982) Coevolution of pierid butterflies and their cruciferous foodplants V. Habitat selection, community structure and speciation. Oecologia 54:101–107. https://doi.org/10.1007/BF00541116

    Article  PubMed  Google Scholar 

  14. Courtney SP, Kibota TT (1990) Mother doesn’t know best: selection of hosts by ovipositing insects. In: Bernays EA (ed) Insect–plant interactions, vol 2. CRC Press, Boca Raton

    Google Scholar 

  15. Cunningham JP (2012) Can mechanism help explain insect host choice? J Evol Biol 25:244–251. https://doi.org/10.1111/j.1420-9101.2011.02435.x

    Article  CAS  PubMed  Google Scholar 

  16. Davis SL, Cipollini D (2014) Do mothers always know best? Oviposition mistakes and resulting larval failure of Pieris virginiensis on Alliaria petiolata, a novel, toxic host. Biol Invasions 16:1941–1950. https://doi.org/10.1007/s10530-013-0637-2

    Article  Google Scholar 

  17. Denno RF, Larsson S, Olmstead KL (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137. https://doi.org/10.2307/1940253

    Article  Google Scholar 

  18. Dethier VG (1941) Chemical factors determining the choice of food plants by Papilio larvae. Am Nat 75:61–73. https://doi.org/10.1086/280929

    Article  Google Scholar 

  19. Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54. https://doi.org/10.1111/j.1558-5646.1954.tb00107.x

    Article  Google Scholar 

  20. Dethier VG (1959) Food-plant distribution and density and larval dispersal as factors affecting insect populations. Can Entomol 91:581–596. https://doi.org/10.4039/Ent91581-9

    Article  Google Scholar 

  21. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x

    Article  Google Scholar 

  22. Ekbom B (1998) Clutch size and larval performance of pollen beetles on different host plants. Oikos 83:56–64. https://doi.org/10.2307/3546546

    Article  Google Scholar 

  23. Forister ML (2004) Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol Entomol 29:264–272. https://doi.org/10.1111/j.0307-6946.2004.00596.x

    Article  Google Scholar 

  24. Fox CW (1993) A quantitative genetic analysis of oviposition preference and larval performance on two hosts in the Bruchid beetle Callosobruchus maculatus. Evolution 47:166–175. https://doi.org/10.1111/j.1558-5646.1993.tb01207.x

    Article  PubMed  Google Scholar 

  25. Fraenkel GS (1959) The raison d’etre of secondary plant substances. Science 129:1466–1470. https://doi.org/10.1126/science.129.3361.1466

    Article  CAS  PubMed  Google Scholar 

  26. GBIF.org (2018) GBIF home page. https://www.gbif.org. Accessed Mar 2018

  27. Gratton C, Welter SC (1999) Does enemy free space exist? Experimental host shifts of an herbivorous fly. Ecology 80:773–785. https://doi.org/10.1890/0012-9658(1999)080%5B0773:DEFSEE%5D2.0.CO;2

    Article  Google Scholar 

  28. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x

    Article  PubMed  Google Scholar 

  29. Grosman AH, Holtz AM, Pallini A, Sabelis MW, Janssen A (2017) Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol Exp Appl 162:261–271. https://doi.org/10.1111/eea.12545

    Article  Google Scholar 

  30. Holliday NJ (1977) Population ecology of winter moth (Operophtera brumata) on apple in relation to larval dispersal and time of bud burst. J Appl Ecol 14:803–813. https://doi.org/10.2307/2402812

    Article  Google Scholar 

  31. Hufnagel M, Schilmiller AL, Ali J, Szendrei Z (2016) Choosy mothers pick challenging plants: maternal preference and larval performance of a specialist herbivore are not linked. Ecol Entomol 42:33–41. https://doi.org/10.1111/een.12350

    Article  Google Scholar 

  32. Jablonski D, Roy K (2003) Geographical range and speciation in fossil and living molluscs. P Royal Soc B Biol Sci 270:401–406. https://doi.org/10.1098/rspb.2002.2243

    Article  Google Scholar 

  33. Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356. https://doi.org/10.1016/0040-5809(78)90012-6

    Article  CAS  PubMed  Google Scholar 

  34. Janz N (2005) The relationship between habitat selection and preference for adult and larval food resources in the polyphagous butterfly Vanessa cardui (Lepidoptera: Nymphalidae). J Insect Behav 18:767–780. https://doi.org/10.1007/s10905-005-8739-z

    Article  Google Scholar 

  35. Janz N, Nylin S (1997) The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis. P Royal Soc B Biol Sci 264:701–707. https://doi.org/10.1098/rspb.1997.0100

    Article  Google Scholar 

  36. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 18(6):4. https://doi.org/10.1186/1471-2148-6-4

    Article  Google Scholar 

  37. Jermy T (1984) The evolution of insect/host plant relationships. Am Nat 124:609–630. https://doi.org/10.1086/284302

    Article  Google Scholar 

  38. Kelly CA, Bowers MD (2016) Preference and performance of generalist and specialist herbivores on chemically defended host plants. Entomol Exp Appl 41:308–316. https://doi.org/10.1111/een.12305

    Article  Google Scholar 

  39. Kennedy JS, Booth CO (1954) Host alternation in Aphis fabae Scop. II. Changes in the aphids. Ann Appl Biol 41:88–106. https://doi.org/10.1111/j.1744-7348.1954.tb00918.x

    Article  Google Scholar 

  40. Kew Science (2018) Plants of the world online http://www.plantsoftheworldonline.org/. Accessed Aug 2018

  41. Kogel WJ (2002) Preference and performance of western flower thrips. In: Thrips and topsoviruses: proceedings of the 7th international symposium on thysanoptera, pp 181–183

  42. Ladner DT, Altizer S (2005) Oviposition preference and larval performance of North American monarch butterflies on four Asclepias species. Entomol Exp Appl 116:9–20. https://doi.org/10.1111/j.1570-7458.2005.00308.x

    Article  Google Scholar 

  43. Martin AD, Stanley-Horn D, Hallett RH (2005) Adult host preference and larval performance of Liriomyza huidobrensis (Diptera: Agromyzidae) on selected hosts. Environ Entomol 34:1170–1177. https://doi.org/10.1093/ee/34.5.1170

    Article  Google Scholar 

  44. Martinez G, Finozzi MV, Cantero G, Soler R, Dicke M, Gonzalez A (2017) Oviposition preference but not adult feeding preference matches with offspring performance in the bronze bug Thaumastocoris peregrinus. Entomol Exp Appl 163:101–111. https://doi.org/10.1111/eea.12554

    Article  CAS  Google Scholar 

  45. Mayhew PJ (1997) Adaptive patterns of host–plant selection by phytophagous insects. Oikos 79:417–428. https://doi.org/10.2307/3546884

    Article  Google Scholar 

  46. Mayhew PJ (2001) Herbivore host choice and optimal bad motherhood. Trends Ecol Evol 16:165–167. https://doi.org/10.1016/S0169-5347(00)02099-1

    Article  PubMed  Google Scholar 

  47. Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge, Massachusetts, p 462

    Book  Google Scholar 

  48. Meister H, Lindman L, Tammaru T (2015) Testing for local monophagy in the regionally oligophagous Euphydryas aurinia (Lepidoptera: Nymphalidae). J Insect Conserv 19:691–702. https://doi.org/10.1007/s10841-015-9792-3

    Article  Google Scholar 

  49. Nosil P (2002) Transition rates between specialization and generalisation in phytophagous insects. Evolution 56:1701–1706. https://doi.org/10.1111/j.0014-3820.2002.tb01482.x

    Article  CAS  PubMed  Google Scholar 

  50. Nylin S, Janz N (1993) Ovi position preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecol Entomol 18:394–398. https://doi.org/10.1111/j.1365-2311.1993.tb01116.x

    Article  Google Scholar 

  51. Nylin S, Bergstrom A, Janz N (2000) Butterfly host plant choice in the face of possible confusion. J Insect Behav 13:469–482. https://doi.org/10.1023/A:1007839200323

    Article  Google Scholar 

  52. Nylin S, Sonderlind L, Gamberale-Stille G, Audusseau H, Cleorio-Mancera MDLP, Janz N, Sperling FAH (2015) Vestiges of an ancestral host plant: preference and performance in the butterfly Polygonia faunus and its sister species P. c-album. Ecol Entomol 40:307–315. https://doi.org/10.1111/een.12187

    Article  Google Scholar 

  53. Paterson H (2005) The competitive Darwin. Paleobiology 31:56–76. https://doi.org/10.1666/0094-8373(2005)031%5B0056:TCD%5D2.0.CO;2

    Article  Google Scholar 

  54. Percy DM (2003) Radiation, diversity and host-plant interactions among island and continental legume-feeding psyllids. Evolution 57:2540–2556. https://doi.org/10.1111/j.0014-3820.2003.tb01498.x

    Article  PubMed  Google Scholar 

  55. Percy DM, Page RDM, Cronk QCB (2004) Plant–insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst Biol 53:120–127. https://doi.org/10.1080/10635150490264996

    Article  PubMed  Google Scholar 

  56. Rahman T, Spafford H, Broughton S (2010) Variation in preference and performance of Frankliniella occidentalis (Thysanoptera: Thripidae) on three strawberry cultivars. J Econ Entomol 103:1744–1753. https://doi.org/10.1603/EC10056

    Article  PubMed  Google Scholar 

  57. Rajapakse CNK, Walter GH (2007) Polyphagy and primary host plants: oviposition preference versus larval performance in the lepidopteran pest Helicoverpa armigera. Arthropod Plant Interact 1:17–26. https://doi.org/10.1007/s11829-007-9003-6

    Article  Google Scholar 

  58. Rajapakse CNK, Walter GH, Moore CJ, Hull CD, Cribb BW (2006) Host recognition by a polyphagous lepidopteran (Helicoverpa armigera): primary host plants, host produced volatiles and neurosensory stimulation. Physiol Entomol 31:270–277. https://doi.org/10.1111/j.1365-3032.2006.00517.x

    Article  CAS  Google Scholar 

  59. Rausher MD (1980) Host abundance, juvenile survival, and oviposition preference in Battus philenor. Evolution 34:342–355. https://doi.org/10.1111/j.1558-5646.1980.tb04823.x

    Article  PubMed  Google Scholar 

  60. Rodrigues D, Freitas AVL (2013) Contrasting egg and larval performances help explain polyphagy in a florivorous butterfly. Arthropod Plant Interact 7:159–167. https://doi.org/10.1007/s11829-012-9230-3

    Article  Google Scholar 

  61. Roininen H, Tahvanainen J (1989) Host selection and larval performance of two willow-feeding sawflies. Ecology 70:129–136. https://doi.org/10.2307/1938419

    Article  Google Scholar 

  62. Sands D (2008) Conserving the Richmond birdwing butterfly over two decades: where to next? Ecol Manag Restor 9:4–16. https://doi.org/10.1111/j.1442-8903.2008.00382.x

    Article  Google Scholar 

  63. Scheirs J, De Bruyn L, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc R Soc B Biol Sci 267:2065–2069. https://doi.org/10.1098/rspb.2000.1250

    Article  CAS  Google Scholar 

  64. Smith GP, Johnson CA, Davidowitz G, Bronstein JL (2017) Linkages between nectaring and oviposition preferences of Manduca sexta on two co-blooming Datura species in the Sonoran Desert. Ecol Entomol. https://doi.org/10.1111/een.12475

    Article  Google Scholar 

  65. Soler R, Pineda A, Li Y, Ponzio C, van Loon JJA, Waldgergis BT, Dicke M (2012) Neonates know better than their mothers when selecting a host plant. Oikos 121:1923–1934. https://doi.org/10.1111/j.1600-0706.2012.20415.x

    Article  Google Scholar 

  66. Swammerdam J, Brookes and Goldsmith (1792) The natural history of insects. R. Morrison and Son, Perth. https://archive.org/details/b28755741/page/n5. Accessed July 2018

  67. Thompson JS (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14. https://doi.org/10.1111/j.1570-7458.1988.tb02275.x

    Article  Google Scholar 

  68. University of Florida (2018) Featured creatures. http://entnemdept.ufl.edu/creatures/. Accessed Mar 2018

  69. Velasco LRI, Walter GH (1992) Availability of different host plant species and changing abundance of the polyphagous bug Nezara viridula (Pentatomidae). Environ Entomol 21:751–759. https://doi.org/10.1093/ee/21.4.751

    Article  Google Scholar 

  70. Wagner D, Doak P (2017) Oviposition, larval survival and leaf damage by the willow leaf blotch miner, Micrurapteryx salicifoliella, in relation to leaf trichomes across 10 Salix species. Ecol Entomol 42:629–635. https://doi.org/10.1111/een.12431

    Article  Google Scholar 

  71. Walter GH (1993) Oviposition behaviour of diphagous parasitoids (Hymenoptera: Aphelinidae), a case of intersexual resource partitioning? Behaviour 124:73–87. https://doi.org/10.1163/156853993X00515

    Article  Google Scholar 

  72. Walter GH, Benfield MD (1994) Temporal host plant use in three polyphagous Heliothinae, with special reference to Helicoverpa punctigera (Wallengren) (Noctuidae: Lepidoptera). Austral Ecol 19:458–465. https://doi.org/10.1111/j.1442-9993.1994.tb00512.x

    Article  Google Scholar 

  73. Walter GH, Hengeveld R (2014) Autecology: organisms, interactions and environmental dynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  74. Wehling WF, Thompson JN (1997) Evolutionary conservatism of oviposition preference in a widespread polyphagous insect herbivore, Papilio zelicaon. Oecologia 111:209–215. https://doi.org/10.1007/s004420050227

    Article  PubMed  Google Scholar 

  75. Wiklund C (1975) The evolutionary relationship between adult oviposition preferences and larval host plant range in Papilio machaon L. Oecologia 18:185–197. https://doi.org/10.1007/BF00345421

    Article  CAS  PubMed  Google Scholar 

  76. Wiklund C (1981) Generalist vs. specialist oviposition behaviour in Papilio machaon (Lepidoptera) and functional aspects on the hierarchy of oviposition preferences. Oikos 36:163–170. https://doi.org/10.2307/3544441

    Article  Google Scholar 

  77. Wiklund C, Friberg M (2009) The evolutionary ecology of generalization: among-year variation in host plant use and offspring survival in a butterfly. Ecology 90:3406–3417. https://doi.org/10.1890/08-1138.1

    Article  PubMed  Google Scholar 

  78. Williams IS (1999) Slow growth, high-mortality—a general hypothesis, or is it? Ecol Entomol 24:490–495. https://doi.org/10.1046/j.1365-2311.1999.00217.x

    Article  Google Scholar 

  79. Wise MJ, Weinberg AM (2002) Prior flea beetle herbivory affects oviposition preference and larval performance of a potato beetle on their shared host plant. Ecol Entomol 27:115–122. https://doi.org/10.1046/j.0307-6946.2001.00383.x

    Article  Google Scholar 

  80. Yamaga Y, Ohgushi T (1999) Preference–performance linkage in a herbivorous lady beetle: consequences of variability of natural enemies. Oecologia 119:183–190. https://doi.org/10.1007/s004420050775

    Article  PubMed  Google Scholar 

  81. Yoon S, Read Q (2016) Consequences of exotic host use: impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 181:985–996. https://doi.org/10.1007/s00442-016-3560-2

    Article  PubMed  Google Scholar 

  82. Wint W (1983) The role of alternative host-plant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera: Geometridae). J Anim Ecol 52:439–450. https://doi.org/10.2307/4564

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Mike Furlong and Bronwen Cribb (University of Queensland, Brisbane, Australia) for their help in the early stages toward development of this manuscript, and to Peter Mayhew (University of York, UK) for sending us the link to the raw data used in his 1997 systematic review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lachlan C. Jones.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Dagmar Voigt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, L.C., Rafter, M.A. & Walter, G.H. Insects allocate eggs adaptively across their native host plants. Arthropod-Plant Interactions 13, 181–191 (2019). https://doi.org/10.1007/s11829-019-09688-x

Download citation

Keywords

  • Development
  • Generalist
  • Oviposition
  • Preference–performance
  • Survival
  • Specialist