Skip to main content
Log in

Volatiles composition and timing of emissions in a moth-pollinated orchid in relation to hawkmoth (Lepidoptera: Sphingidae) activity

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

In the family Orchidaceae, many species have highly specialised floral structures and floral fragrances resulting from interactions with specific pollinators. Olfactory cues are important for the moths to locate orchids at a distance, whereas visual cues are important at a closer range. In this study, we combined a portable air entrainment kit with an automated video monitoring system for collecting volatiles and observing behaviour directly around-the-clock (24 h) in the natural habitat of our target plant–arthropod system, the orchid Platanthera chlorantha and the hawkmoth Sphinx pinastri. We found that P. chlorantha was visited almost exclusively by S. pinastri. All the visits occurred after sunset, principally between sunset and midnight. Soon after midnight, visits dropped to levels recorded at sunset, then declined further towards sunrise. The period with most visits matched the peak production of the terpenoids (Z)-β-ocimene and (E)-β-ocimene. In contrast, linalool, (E)-cinnamyl alcohol and benzyl benzoate emission continued to increase beyond the period of peak visits up to sunrise. Methyl benzoate emissions declined throughout the night from a sunset peak. As temporal emission of the two volatile ocimenes from P. chlorantha flowers matches S. pinastri foraging visits to the flowers, we propose that they play a vital role in assisting hawkmoths locate their hosts. This is the first study to show correspondence in the timing of specific scent emissions in orchids and moth activity on the scale of hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amasino RM, Cheung AY, Dresselhaus T, Kuhlemeier C (2017) Focus on flowering and reproduction. Plant Physiol 173:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  CAS  PubMed  Google Scholar 

  • Balao F, Herrera J, Talavera S, Dötterl S (2011) Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochem 72:601–609

    Article  CAS  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B 280:20130913. https://doi.org/10.1098/rspb.2013.0913

    Article  PubMed  Google Scholar 

  • Braunschmid H, Mükisch B, Rupp T, Schäffler I, Zito R, Birtele D, Dötterl, S (2017) Interpopulation variation in pollinators and floral scent of the lady’s-slipper orchid Cypripedium calceolus L. Arthropod Plant Interact 11:363–379

    Article  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochem 72:1605–1611

    Article  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Bian L, Xu X, Luo Z, Li Z, Chen Z (2017) Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci Rep 7:41818. https://doi.org/10.1038/srep41818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Cordovez V, Etalo DG, van der Voort M, Raaijmakers JM (2016) Role of the GacS sensor kinase in the regulation of volatile production by plant growth promoting Pseudomonas fluorescens SBW25. Front Plant Sci 7:1706

    PubMed  PubMed Central  Google Scholar 

  • Dalen M, Knudsen GK, Norli HR, Thöming G (2015) Sources of volatiles mediating host location behaviour of Glypta haesitator, a larval parasitoid of Cydia nigricana. Biol Control 90:128–140

    Article  CAS  Google Scholar 

  • Darwin C (1876) The effects of cross and self fertilisation in the vegetable kingdom, 2nd edn. John Murray, London

    Book  Google Scholar 

  • Darwin C (1877) The various contrivances by which orchids are fertilised by insects, 2nd edn. John Murray, London

    Book  Google Scholar 

  • Delle-Vedove R, Schatz B, Dufay M (2017) Understanding intraspecific variation of floral scent in light of evolutionary ecology. Ann Bot-London 120:1–20

    Article  Google Scholar 

  • Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latiffolia: Lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  CAS  Google Scholar 

  • Dötterl S, David A, Boland W, Silberbauer-Gottsberger I, Gottsberger G (2012a) Evidence for behavioural attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J Chem Ecol 38:1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Dötterl S, Jahreiss K, Jhumur US, Jürgens A (2012b) Temporal variation of flower in Silene otites (Caryophyllaceae): a species with a mixed pollination system. Bot J Linn Soc 169:447–460

    Article  Google Scholar 

  • Dudareva N, Pichersky E (2006) Biology of floral scents. CRB Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974

    Article  CAS  Google Scholar 

  • Farina WM, Varjú D, Zhou Y (1994) The regulation of distance to dummy flowers during hovering flight in the hawk moth Macroglossum stellatarum. J Comp Physiol A 174:239–247

    Article  Google Scholar 

  • Fenske MP, Imaizumi T (2016) Circadian rhythms in floral scent emission. Front Plant Sci 7(462):1–6. https://doi.org/10.3389/fpls.2016.00462

    Article  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344

    Article  Google Scholar 

  • Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M (2016) Innate olfactory preference for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat Commun 7:11644. https://doi.org/10.1038/ncomms11644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connétable S, Kuhlemeier C (2005) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Plant 222:141–150

    Article  CAS  Google Scholar 

  • Jansen R, Hofstee JW, Bouwmeester H, van Henten E (2010) Automated signal processing applied to volatile-based inspection of greenhouse crops. Sensors 10:7122–7233

    Article  PubMed  Google Scholar 

  • Kelber A, Balkenius A, Warrant EJ (2003) Colour vision in diurnal and nocturnal hawkmoths. Integr Comp Biol 43:571–579

    Article  PubMed  Google Scholar 

  • Kende A, Portwood D, Senior A, Earll M, Bolygo E, Seymor M (2010) Target list building for volatile metabolite profiling of fruit. J Chromatogr A 1217:6718–6723

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Tollsten L (1993) trends in floral scent chemistry in pollonation syndromes: floral scent composition in moth-pollinated taxa. Bot J Linn Soc 113:263–284

    Article  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Knudsen GK, Bengtsson M, Kobro S, Jaastad G, Hofsvang T, Witzgall P (2008) Discrepancy in laboratory and field attraction of apple fruit moth Argyresthia conjugella to host plant volatiles. Physiol Entomol 33:1–6

    Article  CAS  Google Scholar 

  • Koivisto AM, Vallius E, Salonen V (2002) Pollination and reproductive success of two colour variants of a deceptive orchid, Dactylorhiza maculata (Orchidaceae). Nord J Bot 22:53–58

    Article  Google Scholar 

  • Kováts E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 4:1915–1932

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University Paper Series on quantitative applications in the social sciences. Sage, Beverly Hills, pp 07–011

    Google Scholar 

  • Kumano Y, Yamaoka R (2006) Synchronization between temporal variation in heat generation, floral scents and pollinator arrival in beetle-pollinated tropical Araceae Homalomena propinqua. Plant Species Biol 21:173–183

    Article  Google Scholar 

  • LeBlanc HN (2008) Olfactory stimuli associated with the different stages of vertebrate decomposition and their role in the attraction of the blowfly Calliphora vomitoria (Diptera: Calliphoridae) to carcasses. PhD thesis, University of Derby, Derby

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549

    Article  CAS  PubMed  Google Scholar 

  • Lommen A (2009) MetAlign: Interface-Driven, versatile metabolomics tool for hyphenated Full-Scan mass spectrometry data preprosessing. Anal Chem 81:3079–3086

    Article  CAS  PubMed  Google Scholar 

  • Lommen A, Kols HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726

    Article  CAS  PubMed  Google Scholar 

  • Lommen A, van der Weg G, van Engelen MC, Bor G, Hoogenboom LAP, Nielen MWF (2007) An untargeted metabolomics approach to contaminant analysis: Pinpointing potential unknown compounds. Anal Chim Acta 584:43–49

    Article  CAS  PubMed  Google Scholar 

  • Lunau K (2004) Adaptive radiation and coevolution—pollination biology case studies. Org Drivers Evol 4:207–224

    Article  Google Scholar 

  • Majetic CJ, Wiggam SD, Ferguson CJ, Raguso RA (2015) Timing is everything: temporal variation in floral scent, and its connections to pollinator behavior and female reproductive success in Phlox divaricata. Am Midl Nat 173:191–207

    Article  Google Scholar 

  • Martins DJ, Johnson SD (2007) Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Am J Bot 94:650–659

    Article  PubMed  Google Scholar 

  • Martos F, Cariou M-L, Pailler T, Fournel J, Bytebier B, Johnson SD (2015) Chemical and morphological filters in a specialized floral mimicry system. New Phytol 207:225–234

    Article  CAS  PubMed  Google Scholar 

  • Micheneau C, Johnson SD, Fay MF (2009) Orchid pollination: from Darwin to the present day. Bot J Linn Soc 161:1–19

    Article  Google Scholar 

  • Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A, Pailler T, Strasberg D, Chase MW (2010) Orthoptera, a new order of pollinator. Ann Bot 105:355–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell VJ, Manning LA, Cole L, Suckling DM, El-Sayed AM (2008) Efficacy of the pear ester as a monitoring tool for codling moth Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand apple orchard. Pest Manage Sci 64:209–214

    Article  CAS  Google Scholar 

  • Müller H (1871) Application of the Darwinian theory to flowers and the insects which visit them. Am Nat 5:271–297

    Article  Google Scholar 

  • Nilsson LA (1978) Pollination ecology and adaption in Platanthera chlorantha (Orchidaceae). Bot Not 131:35–51

    Google Scholar 

  • Nilsson LA (1983) Processes of isolation and introgressive interplay between Platanthera bifolia (L.) Rich and P. chlorantha (Custer) Reichb. (Orchidaceae). Bot J Linn Soc 87:325–350

    Article  Google Scholar 

  • Nilsson LA (1985) Characteristics and distribution of intermediates between Platanthera bifola and Platanthera chlorantha (Orchidaceae) in the nordic countries. Nord J Bot 5:407–419

    Article  Google Scholar 

  • Plepys D, Ibarra F, Löfstedt C (2002a) Volatiles from flowers of Plantanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74

    Article  CAS  Google Scholar 

  • Plepys D, Ibarra F, Francke W, Löfstedt C (2002b) Odour-mediated nectar foraging in a silver Y moth, Autographa gamma (Lepitoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82

    Article  CAS  Google Scholar 

  • Raguso RA, Light DM (1998) Electroantennogram responses of male Sphinx perlegans hawkmoths to floral and ‘green-leaf volatiles’. Entomol Exp Appl 86:287–293

    Article  CAS  Google Scholar 

  • Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120

    Article  Google Scholar 

  • Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naı̈ve hawkmoths, Manduca sexta. Anim Behav 64:685–695

    Article  Google Scholar 

  • Raguso RA, Light DM, Pickersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22:1735–1766

    Article  CAS  PubMed  Google Scholar 

  • Raguso RA, LeClere AR, Schlumpberger BO (2005) Sensory flexibility in hawkmoth foraging behavior: lessons from Manduca sexta and other species. Chem Senses 30(Suppl 1):i295–i296

    Article  PubMed  Google Scholar 

  • Ramirez SR, Eltz T, Fujiwara MK, Gerlach G, Goldman-Huertas B, Tsutsui ND, Pierce NE (2011) Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333:1742–1746

    Article  CAS  PubMed  Google Scholar 

  • Randlkofer B, Obermaier E, Hilker M, Meiners T (2010) Vegetation complexity—the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl Ecol 11:383–395

    Article  CAS  Google Scholar 

  • Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN (2014) Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–1518

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gironés MA, Llandres AL (2008) Resource competition triggers the co-evolution of long tongues and deep corolla tubes. PLoS ONE 3:e2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schemske DW, Hortvitz CC (1984) Variation among floral visitors in pollination ability: a precondition for mutualism specialization. Science 225:519–521

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP (2015) Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206:571–577

    Article  PubMed  Google Scholar 

  • Schlumpberger BO, Raguso RA (2008) Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoths attraction. Oikos 117:801–814

    Article  Google Scholar 

  • Schroeder R, Hilker M (2008) The relevance of background odor in resource location by insect: a behavioural approach. Bioscience 58:308–316

    Article  Google Scholar 

  • Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Mo Bot Gard 68:301–322

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman, New York

    Google Scholar 

  • Steen R (2012) Pollination of Platanthera chlorantha (Orchidaceae): new video registration of a hawkmoth (Sphingidae). Nord J Bot 30:623–626

    Article  Google Scholar 

  • Steen R (2017) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol Evol 8:203–213

    Article  Google Scholar 

  • Steen R, Aase ALTO (2011) Portable digital video surveillance system for monitoring flower-visiting bumblebees. J Pollinat Ecol 5:90–94

    Google Scholar 

  • Steen R, Mundal D (2013) New video registration of Autographa pulchrina (Haworth, 1809) (Lepidoptera, Noctuidae) and Sphinx pinastri L., 1758 (Lepidoptera, Sphingidae) pollinating Platanthera bifolia latiflora (Orchidaceae) in Norway. Norw J Entomol 60:57–61

    Google Scholar 

  • Stein SE (1999) An integrated method for spectrum extraction and compound identification from GC/MS data. J Am Soc Mass Spectrom 10:770–781

    Article  CAS  Google Scholar 

  • Thomas HS (2015) The role of chemicals in location of host plants by midge pests of UK fruit crops. PhD thesis, University of Greenwich, UK

  • Thöming G, Norli HR, Saucke H, Knudsen GK (2014) Pea plant volatiles guide host location behaviour in pea moth. Arthropod Plant Interact 8:109–122

    Article  Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  CAS  PubMed  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis of metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollsten L (1993) A multivariate approach to post-pollination changes in the floral scent of Plantanthera bifolia (Orchidaceae). Nord J Bot 13:495–499

    Article  Google Scholar 

  • Tollsten L, Bergström G (1993) Fragrance chemotypes of Plantanthera (Orchidaceae)—the results of adaptation to pollinating moths? Nordic J Bot 13:607–613

    Article  Google Scholar 

  • van der Niet T, Jürgens A, Johnson SD (2015) Is the timing of scent emission correlated with insect visitor activity and pollination in long-spurred. Satyrium species? Plant Biol 17:226–237

    Google Scholar 

  • Wasserthal LT (1997) The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot Acta 110:343–359

    Article  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–709

    Article  CAS  PubMed  Google Scholar 

  • Wiebes JT (1979) Co-evolution of figs and their insect pollinators. Annu Rev Ecol Evol Syst 10:1–12

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Kåre Lye and Lars Jørgen Rostad for showing us the locations in Hobøl and Rakkestad, respectively. Further, we are thankful to Professor Vidar Selås for assistance during species identification. Finally, we like to thank Peter Frost for editing and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Steen.

Additional information

Handling Editor: Anna-Karin Borg-Karlson.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Supplementary material 2 (MP4 49050 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steen, R., Norli, H.R. & Thöming, G. Volatiles composition and timing of emissions in a moth-pollinated orchid in relation to hawkmoth (Lepidoptera: Sphingidae) activity. Arthropod-Plant Interactions 13, 581–592 (2019). https://doi.org/10.1007/s11829-019-09682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09682-3

Keywords

Navigation