Abstract
The objective of this study was to identify and quantify the secondary metabolites in different parts of cassava plants infested and non-infested by Phenacoccus manihoti. Experiments were conducted in a greenhouse at Embrapa Soja, Londrina, Paraná, Brazil, with a completely randomized design involving a 3 × 2 × 2 factorial arrangement [i.e., three cassava cultivars (‘Baianinha,’ ‘Santa Helena,’ and ‘IAC-12’), two canopy strata (apical and basal), and two levels of P. manihoti infestation (infested and non-infested)]. Cassava cuttings were vertically positioned in 5-L plastic pots. To generate cassava plants infested with P. manihoti, leaves containing five mass-reared first-instar nymphs were collected and placed on shoot apices. After 48 h, samples were collected for a subsequent extraction of metabolites. Extract aliquots were analyzed by high-performance liquid chromatography to detect and quantify compounds. Extracts from the apical and basal leaves of ‘Baianinha,’ ‘Santa Helena,’ and ‘IAC 12’ cassava cultivars contained caffeic acid, p-coumaric acid, ferulic acid, rutin, and trace amounts of gallic acid. Caffeic acid was mainly detected in the basal leaf extracts for all evaluated cultivars. Additionally, ferulic acid levels were relatively high in the ‘Baianinha’ and ‘Santa Helena’ basal leaves. Furthermore, rutin concentrations were higher in apical leaves than in basal leaves for all three cultivars, regardless of whether the plants were infested by P. manihoti. The presence of P. manihoti induced the production of rutin in the apical leaves of ‘Baianinha’ plants.
References
Adams C, Murrieta R, Siqueira A, Neves W, Sanches R (2008) O pão da terra: da invisibilidade da mandioca na Amazônia. In: Adams C, Murrieta R, Neves W (eds) Sociedades caboclas amazônicas: modernidade e invisibilidade. Annablume, São Paulo, pp 295–321
Argolo ACC, Sant’Anna AEG, Pletsch M, Coelho LCBB (2004) Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresour Technol 95:229–233. https://doi.org/10.1016/j.biortech.2003.12.014
Artlip TS, Wisniewski ME (2002) Induction of proteins in response to biotic and abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 657–679
Barros FC, Sagata E, Ferreira LCC, Juliatti FC (2010) Indução de resistência em plantas contra fitopatógenos. Biosci J 26:231–239
Bellotti AC, Smith L, Lapointe SL (1999) Recent advances in cassava pest management. Annu Rev Entomol 44:343–370. https://doi.org/10.1146/annurev.ento.44.1.343
Bellotti AC, Campo BVH, Hyman G (2012) Cassava production and pest management: present and potential threats in a changing environment. Trop Plant Biol 5:39–72
Bento JMS, Moraes GJ, Matos AP, Warumby JF, Bellotti AC (2002) Controle biológico da cochonilha no nordeste do Brasil. In: Parra JRP, Botelho PSM, Corrêa-Parrra BS, Bento JMS (eds) Controle biológico no Brasil: Parasitóides e predadores. Manole, São Paulo, pp 395–408
Bhattacharya A, Sood P, Citovsky V (2010) The role of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719. https://doi.org/10.1111/j.1364-3703.2010.00625.x
Bonaldo SM, Pascholati SF, Romeiro RS (2007) Indução de resistência: noções básicas e perspectivas. In: Cavalcanti LS, Di Piero RM, Cia P, Pascholati SF, Resende MLV, Romeiro RS (eds) Indução de resistência em plantas a patógenos e insetos. FEALQ, Piracicaba, pp 11–28
Boudet A (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735. https://doi.org/10.1016/j.phytochem.2007.06.012
Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissen W, Jones LR (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, New York, pp 1158–1203
Bulbovas P, Rinaldi MCS, Delitti WBC, Domingos M (2005) Variação sazonal em antioxidantes em folhas de plantas jovens de Caesalpinia echinata Lam. (pau-brasil). Rev Brasil Bot 28:687–696. https://doi.org/10.1590/S0100-84042005000400004
Burbano M, Carabalí A, Montoya-Lerma J, Bellotti AC (2003) Resistencia natural de espécies silvestres de Manihot (Euphorbiaceae) a Mononychellus tanajoa, (Acariformes), Aleurotrachelus socialisy Phenacoccus herreni (Hemiptera). Rev Colomb Entomol 33:110–115
Calatayud PA (2000) Influence of linamarin and rutin on biological performances os Phenacoccus manihoti in artificial diets. Entomol Exp Appl 26:81–86. https://doi.org/10.1046/j.1570-7458.2000.00681.x
Calatayud PA, Múnera DF (2002) Cassava´s natural defense against arthropod pests. In: Ospina BIA, Ceballos H (eds) Cassava in the third millennium: modern production, processing, use, and marketing systems. CIAT/CLAYUCA, Cali, p 574
Calatayud PA, Rahbe Y, Delobel B, Khuong-Huu F, Tertuliano M, Rü B (1994) Influence of secondary compounds in the phloem sap of cassava on expression of antibiosis towards the mealybug Phenacoccus manihoti. Entomol Exp Appl 72:47–57. https://doi.org/10.1111/j.1570-7458.1994.tb01801.x
Coley PD (1983) Herbivory and defensive characteristics of tree species of a lowland tropical forest. Ecol Monogr 53:209–233. https://doi.org/10.2307/1942495
Concomi A, Smerdon MJ, Howe GA, Ryan CA (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nat London 383:826–829. https://doi.org/10.1038/383826a0
Ekmekcioglu C, Feyertag J, Marktl W (1998) Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett 128:137–144. https://doi.org/10.1016/S0304-3835(98)00073-1
Farias ARN (1991) Pragas da mandioca e seu controle. Embrapa-CNPMF, Cruz das Almas, p 39
Farias ARN (2005) Pragas da mandioca: instruções práticas. Embrapa-CNPMF, Cruz das Almas, p 32
Gazola D, Zucareli C, Ringenberg R. Graça JP da, Hoffmann-Campo CB (2018) Nitrogen fertilization in the contents of secondary compounds in cassava cultivars. Sem Ciênc Agrár 39:1015–1028. https://doi.org/10.5433/1679-0359.2018v39n3p1015
Givovich A, Morse S, Cerda H, Niemeyer HM, Watten SD, Edwards PJ (1992) Hydroxamic acid glucosides in the honeydew of aphids feeding on wheat. J Chem Ecol 18:841–846. https://doi.org/10.1007/BF00988324
Goławska S, Sprawka I, Łukasik I, Goławski A (2013) Are naringenin and quercetin useful chemicals in pest-management strategies? J Pest Sci 87:173–180. https://doi.org/10.1007/s10340-013-0535-5
Harborne JB, Grayer RJ (1993) Flavonoids and insects. In: Harborne JB (ed) The flavonoids advances in research since, 1986. Chapman & Hall, London, pp 589–618
Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. https://doi.org/10.1016/S0031-9422(00)00235-1
Hartleb H, Heitefuss R, Hoppe H (1997) Resistance of crop plants against fungi. G. Fischer, Stuttgart, p 544
Hoffmann-Campo CB, Harbone JB, McCaffery AR (2001) Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol Exp Appl 98:181–194. https://doi.org/10.1046/j.1570-7458.2001.00773.x
Hoffmann-Campo CB, Ramos Neto JA, Oliveira MCN de, Oliveira LJ (2006) Detrimental effect of rutina on Anticarsia gemmatalis. Pesqui Agropecu Brasil 41:1453–1459. https://doi.org/10.1590/S0100-204X2006001000001
Kessler A, Baldwin IT (2004) Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. Plant J 38:639–649. https://doi.org/10.1111/j.1365-313X.2004.02076.x
Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung SY, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–2117. https://doi.org/10.2135/cropsci2003.2109
Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 21:929–949. https://doi.org/10.1016/S0305-1978rsar(03)00087-5
Leite B, Oncato LDB, Pascholati SF, Lambais MR (1997) Reconhecimento e transdução de sinais moleculares em interações plantas-fungos patogênicos. Rev Anu Patol Plant 5:235–280
Lin H, Kogan M, Fischer D (1990) Induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae): comparison of inducing factors. Environ Entomol 19:1852–1857. https://doi.org/10.1093/ee/19.6.1852
Monteiro JM, Albuquerque UP, Araújo EL, Amorim ELC (2005) Taninos: uma abordagem da química à ecologia. Quím Nova 28:892–896. https://doi.org/10.1590/S0100-40422005000500029
Parsa S, Takumasa K, Winotai A (2012) The Cassava mealybug (Phenacoccus manihoti) in Asia: first records, potential distribution, and an identification key. PLoS ONE 7:10. https://doi.org/10.1371/journal.pone.0047675
Pietrowski V, Ringenberg R, Rheinheimer AR, Bellon PP, Gazola D, Miranda AM (2010) Insetos-praga na cultura da mandioca na região Centro-Sul do Brasil. Marechal Candido Rondon 1:20–23
Pinto-Zevallos DM, Pareja M, Ambrogi BG (2016) Current knowledge and future research perspectives on cassava (Manihoti esculenta Crantz) chemical defenses: an agroecological view. Phytochemistry 30:1–12. https://doi.org/10.1016/j.phytochem.2016.05.013
Piubelli GC (2004) Bioatividade de genótipos de soja resistentes a A. gemmatalis Hübner (Lepidoptera: Noctuidae) e interações de suas substâncias químicas com inimigos naturais. Thesis, Universidade Federal do Paraná
Piubelli GC, Hoffmann-Campo CB, Moscardi F, Miyakubo SH, de Oliveira MCN (2005) Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? J Chem Ecol 31(n.7):1515–1531. https://doi.org/10.1007/s10886-005-5794-z
Rheinheimer AR (2013) Resistência de variedades de mandioca à cochonilha Phenacoccus manihoti (Matle-Ferrero) e sua influência sobre o parasitoide Anagyrus lipezi (De Santis). Thesis, Universidade Estadual do Oeste do Paraná
Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary metabolites, 1st edn. Academic Press, New York, pp 1–54
Salvador MC, Boiça Junior AL, Hoffmann-Campo CB, Neves MC de, Silva SH, Graça JP da, Abrão MZ, Pitta RM (2006) Atividade biológica de Anticarsia gemmatalis em dieta artificial com diferentes concentrações de caseína e rutina. Biológico 68(Suplemento):452–455
Salvador MC, Boiça Jr AL, Oliveira, MCN de, Graça JP da, Silva DM da, Hoffmann-Campo CB (2010) Do different casein concentrations increase the adverse effect of rutin on the biology of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae)? Neotrop Entomol 39:774–783. https://doi.org/10.1590/S1519-566X2010000500017
Santos MAI (2013) Folhas de mandioca: caracterização de compostos fenólicos, atividades antioxidante e inseticida. Thesis, Universidade Federal de Lavras
Sartori CJ, Castro AHF, Mori FA (2014) Teores de Fenóis Totais e Taninos nas Cascas de Angico-vermelho (Anadenanthera peregrina). Florest Ambient 21:394–400. https://doi.org/10.1590/2179-8087.061113
SAS Institute (2009) Statistical Analysis System Institute. SAS/STAT: user’s guide. Version 9.2. SAS Institute, Cary, p 7869
Schaller A (2008) Induced plant resistance to herbivory. Springer, Hardcover, p 464
Seab – Secretária de estado agricultura e abastecimento (2015) Prognóstico mandioca—safra 2017/18. http://www.agricultura.pr.gov.br/arquivos/File/deral/Prognosticos/2018/Mandioca_2017_18.pdf. Accessed 20 April 2018
Simmonds MSJ (2001) Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. J Chem Ecol 27:965–977. https://doi.org/10.1023/A:1010339104206
Simmonds MSJ (2003) Flavonoid insect-interaction: recent advances in our knowledge. Phytochemistry 64:21–30. https://doi.org/10.1016/S0031-9422(03)00293-0
Simonyan AV (1993) Activity of cinnamic acid derivatives and new methods for their synthesis. Pharm Chem J 27:92–100. https://doi.org/10.1007/BF00781068
Taiz L, Zeiger E (2010) Plant physiology. Sinauer Associates, Sunderland, p 782
Vieira SS, Lourenção AL, Graça JP da, Janegitz T, Salvador MC, de Oliveira MCN, Hoffmann-Campo CB (2016) Biological aspects of Bemisia tabaci biotype B and the chemical causes of resistance in soybean genotypes. Arthropod-Plant Interact 10:525–534. https://doi.org/10.1007/s11829-016-9458-4
Wiggins NL, Forrister DL, Endara MJ, Coley PD, Kursar TA (2016) Quantative and qualitative shifts in defensive metabolites defone chemical defense investment during leaf development in Inga, a genus of tropical trees. Ecol Evol 6:478–492. https://doi.org/10.1002/ece3.1896
Acknowledgements
We thank Dr. Vanda Pietrowski, Universidade do Oeste do Paraná (Unioeste) for providing the initial mealybug population for essays setting. Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript. Empresa Brasileirra de Pesquisa Agropecuária (Embrapa) received grant-aided support from project MP 2/SEG 02.12.02.009.00.04.006. D.G acknowledges Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a scholarship to fund this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Ritu Chaudhary.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gazola, D., Zucareli, C., Ringenberg, R. et al. Secondary metabolite contents in different parts of cassava plants infested by Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae). Arthropod-Plant Interactions 13, 359–366 (2019). https://doi.org/10.1007/s11829-018-9649-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11829-018-9649-2