Skip to main content

Temporal changes in floral resource availability and flower visitation in a butterfly

Abstract

Foraging affects survival and reproductive success in animals, including flower-visiting insects. Plant-derived floral food resources (i.e. nectar and pollen) may be rapidly changing in space and time and pollinators may need to quickly switch to new resources. Butterflies are suitable model organisms to investigate foraging behaviour of insect pollinators, because they can be easily monitored under natural conditions. We studied flower visitation patterns in the Clouded Apollo butterfly Parnassius mnemosyne in relation to the abundance of available floral resources. We recorded flower visitation daily in individually marked butterflies, listed flowering species and estimated flower abundance categories every 3 days in a single meadow, during five consecutive flight periods. Butterflies visited 35 nectar plants from the 71 species available. Few nectar plants were frequently visited (visit ratios for the annually most visited species: 37–60%), many were scarcely visited and no visits were observed on several abundant species. Flower abundance and visit ratio varied among years and within flight periods. The number of visits increased with flower abundance in the seven most frequently visited plant species, but not in the occasionally visited ones. Beside their choosiness, Parnassius mnemosyne butterflies were able to adjust foraging behaviour to rapidly changing resource distributions. Diet selectivity in adults might increase the vulnerability of this species. However, visitation plasticity may mitigate the effect of the lack of some nectar plants, as complementary resources can be used as alternatives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andersson S (2003) Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae) to floral scents. Chemoecology 13:1–11. https://doi.org/10.1007/s000490300000

    CAS  Article  Google Scholar 

  2. Bagella S, Satta A, Floris I et al (2013) Effects of plant community composition and flowering phenology on honeybee foraging in Mediterranean sylvo-pastoral systems. Appl Veg Sci 16:689–697. https://doi.org/10.1111/avsc.12023

    Article  Google Scholar 

  3. Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little TJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 117–141

    Google Scholar 

  4. Barrios B, Pena SR, Salas A, Koptur S (2016) Butterflies visit more frequently, but bees are better pollinators: the importance of mouthpart dimensions in effective pollen removal and deposition. AoB Plants 1–10. https://doi.org/10.1093/aobpla/plw001

  5. Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–20649. https://doi.org/10.1073/pnas.1115559108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Bartomeus I, Park MG, Gibbs J et al (2013) Biodiversity ensures plant-pollinator phenological synchrony against climate change. Ecol Lett 16:1331–1338. https://doi.org/10.1111/ele.12170

    PubMed  Article  Google Scholar 

  7. Bartonova A, Benes J, Konvička M (2014) Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera)—are we missing a part of the picture? Eur J Entomol 111:543–553. https://doi.org/10.14411/eje.2014.060

    Google Scholar 

  8. Baz A (2002) Nectar plant sources for the threatened Apollo butterfly (Parnassius apollo L. 1758) in populations of central Spain. Biol Conserv 103:277–282. https://doi.org/10.1016/S0006-3207(01)00138-0

    Article  Google Scholar 

  9. Benadi G, Hovestadt T, Poethke H-J, Blüthgen N (2014) Specialization and phenological synchrony of plant-pollinator interactions along an altitudinal gradient. J Anim Ecol 83:639–650. https://doi.org/10.1111/1365-2656.12158

    PubMed  Article  Google Scholar 

  10. Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520. https://doi.org/10.1242/jeb.048728

    PubMed  Article  Google Scholar 

  11. Bloch D, Werdenberg N, Erhardt A (2006) Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum? New Phytol 169:699–706. https://doi.org/10.1111/j.1469-8137.2005.01653.x

    PubMed  Article  Google Scholar 

  12. Blüthgen N, Klein A-M (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291. https://doi.org/10.1016/j.baae.2010.11.001

    Article  Google Scholar 

  13. Boggs CL (1997) Reproductive allocation from reserves and income in butterfly species with differing adult diets. Ecology 78:181–191

    Article  Google Scholar 

  14. Borhidi A (2003) Magyarország növénytársulásai [Plant communities of Hungary]. Akadémiai Kiadó, Budapest

    Google Scholar 

  15. Bosch J, González AMM, Rodrigo A, Navarro D (2009) Plant-pollinator networks: adding the pollinator’s perspective. Ecol Lett 12:409–419. https://doi.org/10.1111/j.1461-0248.2009.01296.x

    PubMed  Article  Google Scholar 

  16. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449. https://doi.org/10.2307/1935620

    Article  Google Scholar 

  17. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615. https://doi.org/10.1098/rspb.2006.3721

    CAS  PubMed  Article  Google Scholar 

  18. Cahenzli F, Erhardt A (2013) Nectar amino acids enhance reproduction in male butterflies. Oecologia 171:197–205. https://doi.org/10.1007/s00442-012-2395-8

    PubMed  Article  Google Scholar 

  19. Carreck NL, Williams IH (2002) Food for insect pollinators on farmland: insect visits to flowers of annual seed mixtures. J Insect Conserv 6:13–23. https://doi.org/10.1023/A:1015764925536

    Article  Google Scholar 

  20. Chittka L, Gumbert A, Kunze J (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 8:239–249. https://doi.org/10.1093/beheco/8.3.239

    Article  Google Scholar 

  21. Conner JK, Davis R, Rush S (1995) The effect of wild radish floral morphology on pollination efficiency by four taxa of pollinators. Oecologia 104:234–245. https://doi.org/10.1007/S00442-002-0894-8

    PubMed  Article  Google Scholar 

  22. Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci 109:9000–9005. https://doi.org/10.1073/pnas.1118364109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Corbet SA, Kerslake CJC, Brown D, Morland NE (1984) Can bees select nectar-rich flowers in a patch? J Apic Res 23:234–242. https://doi.org/10.1080/00218839.1984.11100638

    Article  Google Scholar 

  24. Cowgill SE, Wratten SD, Sotherton NW (1993) The selective use of floral resources by the hoverfly Episyrphus balteatus (Diptera: Syrphidae) on farmland. Ann Appl Biol 122:223–231

    Article  Google Scholar 

  25. Curtis RJ, Brereton TM, Dennis RLH et al (2015) Butterfly abundance is determined by food availability and is mediated by species traits. J Appl Ecol 52:1676–1684. https://doi.org/10.1111/1365-2664.12523

    Article  Google Scholar 

  26. Dalmazzo M, Vossler FG (2015) Pollen host selection by a broadly polylectic halictid bee in relation to resource availability. Arthropod-Plant Inte 9:253–262. https://doi.org/10.1007/s11829-015-9364-1

    Article  Google Scholar 

  27. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176. https://doi.org/10.1023/A:1018455714879

    Article  Google Scholar 

  28. Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966. https://doi.org/10.1007/s10531-005-4314-3

    Article  Google Scholar 

  29. Donnelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55:805–817. https://doi.org/10.1007/s00484-011-0426-5

    PubMed  Article  Google Scholar 

  30. Dramstad W, Fry G (1995) Foraging activity of bumblebees (Bombus) in relation to flower resources on arable land. Agric Ecosyst Environ 53:123–135

    Article  Google Scholar 

  31. Elzinga JA, Atlan A, Biere A et al (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439. https://doi.org/10.1016/j.tree.2007.05.006

    PubMed  Article  Google Scholar 

  32. Erhardt A (1992) Preferences and non-preferences for nectar constituents in Ornithoptera priamus poseidon (Lepidoptera, Papilionidae). Oecologia 90:581–585

    PubMed  Article  Google Scholar 

  33. Erhardt A, Mevi-Schütz J (2009) Adult food resources in butterflies. In: Settele J, Shreeve T, Konvička M, Dyck H, Van (eds) Ecology of butterflies in Europe. Cambrige University Press, Cambridge, pp 9–16

    Google Scholar 

  34. Ezzeddine M, Matter SF (2008) Nectar flower use and electivity by butterflies in sub-alpine meadows. J Lepid Soc 62:138–142

    Google Scholar 

  35. Fabina NS, Abbott KC, Gilman RT (2010) Sensitivity of plant-pollinator-herbivore communities to changes in phenology. Ecol Modell 221:453–458. https://doi.org/10.1016/j.ecolmodel.2009.10.020

    Article  Google Scholar 

  36. Filella I, Primante C, Llusià J et al (2013) Floral advertisement scent in a changing plant-pollinators market. Sci Rep 3:3434. https://doi.org/10.1038/srep03434

    PubMed  PubMed Central  Article  Google Scholar 

  37. Forrest JRK (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13. https://doi.org/10.1111/oik.01386

    Article  Google Scholar 

  38. Forrest JRK, Thomson JD (2011) An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecol Monogr 81:469–491. https://doi.org/10.1890/10-1885.1

    Article  Google Scholar 

  39. Fournier DA, Skaug HJ, Ancheta J et al (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249. https://doi.org/10.1080/10556788.2011.597854

    Article  Google Scholar 

  40. Franzén M, Nilsson SG, Johansson V, Ranius T (2013) Population fluctuations and synchrony of grassland butterflies in relation to species traits. PLoS ONE 8:e78233. https://doi.org/10.1371/journal.pone.0078233

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Fred MS, O’Hara RB, Brommer JE (2006) Consequences of the spatial configuration of resources for the distribution and dynamics of the endangered Parnassius apollo butterfly. Biol Conserv 130:183–192. https://doi.org/10.1016/j.biocon.2005.12.012

    Article  Google Scholar 

  42. Fründ J, Linsenmair KE, Blüthgen N (2010) Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581–1590. https://doi.org/10.1111/j.1600-0706.2010.18450.x

    Article  Google Scholar 

  43. Fründ J, Dormann CF, Tscharntke T (2011) Linné’s floral clock is slow without pollinators—flower closure and plant-pollinator interaction webs. Ecol Lett 14:896–904. https://doi.org/10.1111/j.1461-0248.2011.01654.x

    PubMed  Article  Google Scholar 

  44. Galen C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. Bioscience 49:631. https://doi.org/10.2307/1313439

    Article  Google Scholar 

  45. Goulson D (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect Plant Ecol Evol Syst 2:185–209. https://doi.org/10.1078/1433-8319-00070

    Article  Google Scholar 

  46. Goulson D, Cory J (1993) Flower constancy and learning in foraging preferences of the green-veined white butterfly Pieris napi. Ecol Entomol 315–320

  47. Habel JC, Segerer A, Ulrich W et al (2016) Butterfly community shifts over two centuries. Conserv Biol 30:754–762. https://doi.org/10.1111/cobi.12656

    PubMed  Article  Google Scholar 

  48. Hantson S, Baz A (2011) Seasonal change in nectar preference for a mediterranean butterfly community. J Lepid Soc 67:134–142. https://doi.org/10.18473/lepi.v67i2.a5

    Google Scholar 

  49. Hardy P, Sparks T, Isaac N, Dennis R (2007) Specialism for larval and adult consumer resources among British butterflies: implications for conservation. Biol Conserv 138:440–452

    Article  Google Scholar 

  50. Hatfield R, Lebuhn G (2007) Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biol Conserv 139:150–158. https://doi.org/10.1016/j.biocon.2007.06.019

    Article  Google Scholar 

  51. Hegland SJ, Boeke L (2006) Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol Entomol 31:532–538. https://doi.org/10.1111/j.1365-2311.2006.00812.x

    Article  Google Scholar 

  52. Hegland SJ, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x

    PubMed  Article  Google Scholar 

  53. Iler AM, Inouye DW, Høye TT et al (2013) Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Glob Chang Biol 19:2348–2359. https://doi.org/10.1111/gcb.12246

    PubMed  Article  Google Scholar 

  54. James D, Hornik K (2013) chron: Chronological objects which can handle dates and times. http://cran.r-project.org/package=chron

  55. Jennersten O (1984) Flower visitation and pollination efficiency of some North European butterflies. Oecologia 63:80–89

    PubMed  Article  Google Scholar 

  56. Jennersten O (1988) Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set. Conserv Biol 2:359–366

    Article  Google Scholar 

  57. Johnson S, Bond WJ (1994) Red flowers and butterfly pollination in the fynbos of South Africa. In: Arianoutsou M, Groves R (eds) Plant–animal interactions in Mediterranean-type ecosystems. Springer, Dordrecht, pp 137–148

    Chapter  Google Scholar 

  58. Kandori I, Ohsaki N (1996) The learning abilities of the White cabbage butterfly, Pieris rapae, foraging for flowers. Res Popul Ecol (Kyoto) 38:111–117. https://doi.org/10.1007/BF02514977

    Article  Google Scholar 

  59. Kim W, Gilet T, Bush JWM (2011) Optimal concentrations in nectar feeding. Proc Natl Acad Sci USA 108:16618–16621. https://doi.org/10.1073/pnas.1108642108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Kitahara M, Yumoto M, Kobayashi T (2008) Relationship of butterfly diversity with nectar plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan. Biodivers Conserv 17:2713–2734. https://doi.org/10.1007/s10531-007-9265-4

    Article  Google Scholar 

  61. Kobayashi-Kidokoro M, Higashi S (2010) Flower constancy in the generalist pollinator Ceratina flavipes (Hymenoptera: Apidae): an evaluation by pollen analysis. Psyche A J Entomol 2010:1–8. https://doi.org/10.1155/2010/891906

    Article  Google Scholar 

  62. Konvička M, Kuras T (1999) Population structure, behaviour and selection of oviposition sites of an endangered butterfly, Parnassius mnemosyne, in Litovelské Pomoravíl. Czech Republic. J Insect Conserv 3:211–223. https://doi.org/10.1023/A:1009641618795

    Article  Google Scholar 

  63. Konvička M, Vlasanek P, Hauck D (2006) Absence of forest mantles creates ecological traps for Parnassius mnemosyne (Papilionidae). Nota Lepidopterol 29:145–152

    Google Scholar 

  64. Kubo M, Kobayashi T, Kitahara M, Hayashi A (2008) Seasonal fluctuations in butterflies and nectar resources in a semi-natural grassland near Mt. Fuji, central Japan. Biodivers Conserv 18:229–246. https://doi.org/10.1007/s10531-008-9471-8

    Article  Google Scholar 

  65. Kudo G, Ida TY (2013) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94:2311–2320. https://doi.org/10.1890/12-2003.1

    PubMed  Article  Google Scholar 

  66. Kudrna O, Seufert W (1991) Ökologie und Schutz von Parnassius mnemosyne (Linnaeus, 1758) in der Rhön. Oedippus 2:1–44

    Google Scholar 

  67. Kuusemets V, Meier K, Luig J, Liivamägi A (2005) Habitat and landscape structure requirements of Clouded Apollo. In: Kuhn E, Feldmann R, Thomas J (eds) Studies on the ecology & conservation of butterflies in Europe. vol.1. General concepts and case studies. PENSOFT, Sofia-Moscow, pp 18–21

    Google Scholar 

  68. Lara Ruiz J (2011) Fuentes nectaríferas de los Papilionidae ibéricos (Lepidoptera). Bol la SAE 18:68–87

    Google Scholar 

  69. Lebeau J, Wesselingh RA, Van Dyck H (2016) Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 180:421–427. https://doi.org/10.1007/s00442-015-3492-2

    PubMed  Article  Google Scholar 

  70. Lebeau J, Wesselingh RA, Van Dyck H (2017) Flower use of the butterfly Maniola jurtina in nectar-rich and nectar-poor grasslands: a nectar generalist with a strong preference? Insect Conserv Divers. https://doi.org/10.1111/icad.12222

    Google Scholar 

  71. Lewis A (1989) Flower visit consistency in Pieris rapae, the cabbage butterfly. J Anim Ecol 58:1–13

    Article  Google Scholar 

  72. Liivamägi A, Kuusemets V, Luig J, Kask K (2013) Changes in the distribution of Clouded Apollo Parnassius mnemosyne (Lepidoptera: Papilionidae) in Estonia. Entomol Fenn 24:186–192

    Google Scholar 

  73. Luoto M, Kuussaari M, Rita H et al (2001) Determinants of distribution and abundance in the Clouded Apollo butterfly: a landscape ecological approach. Ecography 24:601–617. https://doi.org/10.1111/j.1600-0587.2001.tb00494.x

    Article  Google Scholar 

  74. Mahoro S (2002) Individual flowering schedule, fruit set, and flower and seed predation in Vaccinium hirtum Thunb. (Ericaceae). Can J Bot 80:82–92. https://doi.org/10.1139/b01-136

    Article  Google Scholar 

  75. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x

    PubMed  Article  Google Scholar 

  76. Menzel R (2001) Behavioral and neural mechanisms of learning and memory as determinants of flower constancy. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge, pp 33–44

    Google Scholar 

  77. Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am Nat 165:411–419. https://doi.org/10.1086/429150

    PubMed  Google Scholar 

  78. Naug D, Arathi HS (2007) Sampling and decision rules used by honey bees in a foraging arena. Anim Cogn 10:117–124. https://doi.org/10.1007/s10071-006-0044-5

    PubMed  Article  Google Scholar 

  79. Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Springer, Dordrecht

    Book  Google Scholar 

  80. O’Brien DM, Boggs CL, Fogel ML (2004) Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation. Oikos 105:279–291. https://doi.org/10.1111/j.0030-1299.2004.13012.x

    Article  Google Scholar 

  81. Ômura H, Honda K, Hayashi N (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J Chem Ecol 25:1895–1906. https://doi.org/10.1023/A:1020990018111

    Article  Google Scholar 

  82. Ovaskainen O, Skorokhodova S, Yakovleva M et al (2013) Community-level phenological response to climate change. Proc Natl Acad Sci USA 110:13434–13439. https://doi.org/10.1073/pnas.1305533110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Petanidou T, Kallimanis AS, Tzanopoulos J et al (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575. https://doi.org/10.1111/j.1461-0248.2008.01170.x

    PubMed  Article  Google Scholar 

  84. Potts S, Biesmeijer J, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007

    PubMed  Article  Google Scholar 

  85. Pöyry J, Paukkunen J, Heliölä J, Kuussaari M (2009) Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 160:577–587. https://doi.org/10.1007/s00442-009-1328-7

    PubMed  Article  Google Scholar 

  86. Pratt GF, Wiesenborn WD (2009) Macneill’s sootywing (Hesperopsis gracielae) (Lepidoptera: Hesperiidae) behaviors observed along transects. Proc Entomol Soc Washington 111:698–707. https://doi.org/10.4289/0013-8797-111.3.698

    Article  Google Scholar 

  87. Primack RB, Ibáñez I, Higuchi H et al (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577. https://doi.org/10.1016/j.biocon.2009.06.003

    Article  Google Scholar 

  88. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  89. Riffell JA, Lei H, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204. https://doi.org/10.1126/science.1225483

    CAS  PubMed  Article  Google Scholar 

  90. Ronkay L (1997) Nemzeti biodiverzitás monitorozó rendszer VII. Lepkék [The Hungarian biodiversity monitoring system manual; series VII. Butterflies]. Magyar Természettudományi Múzeum, Budapest

  91. Settele J (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia-Moscow

    Google Scholar 

  92. Simon T (1994) A magyarországi edényes flóra határozója: harasztok – virágos növények [Identification guide to the vascular plants of Hungary: ferns – flowering plants], 5th edn. Nemzeti Tankönyvkiadó Rt., Budapest

  93. Stefanescu C (1997) Migration patterns and feeding resources of the Painted Lady butterfly, Cynthia cardui (L.)(Lepidoptera, Nymphalidae) in the northeast of the Iberian peninsula. Miscel·lània Zoològica 20:31–48

    Google Scholar 

  94. Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands: a mini review. Biol Conserv 104:275–284. https://doi.org/10.1016/S0006-3207(01)00192-6

    Article  Google Scholar 

  95. Stephens DW, Brown JS, Ydenberg RC (2007) Foraging—behavior and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  96. Szigeti V, Harnos A, Kőrösi Á et al (2015) Kis Apolló-lepkék (Parnassius mnemosyne) élőhelyhasználata nektárforrásuk és lárvális tápnövényük függvényében [Habitat use, larval host-plant and nectar-plant distribution in the Clouded Apollo butterfly Parnassius mnemosyne]. Természetvédelmi Közl 21:311–320

    Google Scholar 

  97. Szigeti V, Kőrösi Á, Harnos A et al (2016) Comparing two methods for estimating floral resource availability for insect pollinators in semi-natural habitats. Ann de la Société entomol Fr 52:289–299. https://doi.org/10.1080/00379271.2016.1261003

    Article  Google Scholar 

  98. Thackeray SJ, Sparks TH, Frederiksen M et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x

    Article  Google Scholar 

  99. The Plant List (2013) Version 1.1. Published on the Internet. http://www.theplantlist.org/

  100. Thomas RC, Schultz CB (2016) Resource selection in an endangered butterfly: females select native nectar species. J Wildl Manage 80:171–180. https://doi.org/10.1002/jwmg.987

    Article  Google Scholar 

  101. Thomson JD (2010) Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philos Trans R Soc B Biol Sci 365:3187–3199. https://doi.org/10.1098/rstb.2010.0115

    Article  Google Scholar 

  102. Tolman T, Lewington R (2008) Collins field guide: butterflies of Britain and Europe. Collins, London

    Google Scholar 

  103. Tudor O, Dennis RLH, Greatorex-Davies JN, Sparks TH (2004) Flower preferences of woodland butterflies in the UK: nectaring specialists are species of conservation concern. Biol Conserv 119:397–403. https://doi.org/10.1016/j.biocon.2004.01.002

    Article  Google Scholar 

  104. Välimäki P, Itämies J (2003) Migration of the clouded Apollo butterfly Parnassius mnemosyne in a network of suitable habitats—effects of patch characteristics. Ecography 26:679–691. https://doi.org/10.1034/j.1600-0587.2003.03551.x

    Article  Google Scholar 

  105. van Swaay C, Wynhoff I, Verovnik R et al (2010) Parnassius mnemosyne. The IUCN red list of threatened species. http://www.iucnredlist.org/

  106. Vojnits AM, Ács E (2000) Biology and behaviour of a Hungarian population of Parnassius mnemosyne (Linnaeus, 1758). Oedippus 17:1–24

    Google Scholar 

  107. Wallis DeVries MF, van Swaay CAM, Plate CL et al (2012) Changes in nectar supply: a possible cause of widespread butterfly decline. Curr Zool 58:384–391. https://doi.org/10.1093/czoolo/58.3.384

    Article  Google Scholar 

  108. Wand M, Ripley B (2013) KernSmooth: functions for kernel smoothing for Wand & Jones (1995). http://cran.r-project.org/package=KernSmooth

  109. Wardhaugh CW (2015) How many species of arthropods visit flowers? Arthropod-Plant Inte 9:547–565. https://doi.org/10.1007/s11829-015-9398-4

    Article  Google Scholar 

  110. Watanabe M, Hirota M (1999) Effects of sucrose intake on spermatophore mass produced by male swallowtail butterfly Papilio xuthus L. Zoolog Sci 16:55–61. https://doi.org/10.2108/zsj.16.55

    Article  Google Scholar 

  111. Weiss J-C (1999) The mnemosyne Group. In: The Parnassiinae of the world, Part 3. Hillside Books, Canterbury, pp 177–202

    Google Scholar 

  112. Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  113. Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Zsolt Lang, Péter Kabai and three anonymous reviewers for their comments that helped us to improve the manuscript. Csilla Danka helped us in field work. János Nagy, Gábor Turcsányi and Irén Turcsányiné Siller helped in identifying plant species and designing botanical sampling. We are grateful for the help of the Duna-Ipoly National Park. We used free software (LibreOffice, Mendeley, R, RKWard under Ubuntu). During this study, VS received a PhD fellowship at Szent István University, Doctoral School of Veterinary Science. The project was supported by the grants NKB-4185/59/2012, NKB-4533/53/2013 and NKB-4848/53/2014. Field work was licensed by the Hungarian nature conservation authorities: KTVF: 28512-2/2010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to János Kis.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 452 KB)

Supplementary material 2 (XLS 14 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szigeti, V., Kőrösi, Á., Harnos, A. et al. Temporal changes in floral resource availability and flower visitation in a butterfly. Arthropod-Plant Interactions 12, 177–189 (2018). https://doi.org/10.1007/s11829-017-9585-6

Download citation

Keywords

  • Foraging behaviour
  • Resource selection
  • Nectar plant
  • Parnassius mnemosyne
  • Clouded Apollo
  • Lepidoptera