Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops

  • Séverin Hatt
  • Roel Uyttenbroeck
  • Thomas Lopes
  • Ju Lian Chen
  • Julien Piqueray
  • Arnaud Monty
  • Frédéric Francis
Original Paper

Abstract

Reducing the use of insecticides is an important issue for agriculture today. Sowing wildflower strips along field margins or within crops represents a promising tool to support natural enemy populations in agricultural landscapes and, thus, enhance conservation biological control. However, it is important to sow appropriate flower species that attract natural enemies efficiently. The presence of prey and hosts may also guide natural enemies to wildflower strips, potentially preventing them from migrating into adjacent crops. Here, we assessed how seven flower traits, along with the abundance of pollen beetles (Meligethes spp., Coleoptera: Nitidulidae) and true weevils (Ceutorhynchus spp., Coleoptera: Curculionidae), affect the density of parasitoids of these two coleopterans in wildflower strips sown in an oilseed rape field in Gembloux (Belgium). Only flower traits, not host (i.e. pollen beetles and true weevils) abundance, significantly affected the density of parasitoids. Flower colour, ultraviolet reflectance and nectar availability were the main drivers affecting parasitoids. These results demonstrate how parasitoids of oilseed rape pests react to flower cues under field conditions. Similar analyses on the pests and natural enemies of other crops are expected to help to develop perennial flower mixtures able to enhance biological control throughout a rotation system.

Keywords

Conservation biological control Hymenopteran wasp Flower colour Ultraviolet reflectance Nectar availability Redundancy analysis 

Notes

Acknowledgements

The authors thank the technical support provided by the Experimental Farm of Gembloux Agro-Bio Tech (University of Liège), Marc Dufrêne for its precious help regarding the statistical analyses, the Belgian National Fund for Scientific Research (FNRS) for providing a PhD fellowship to Thomas Lopes and the TRY initiative on plant traits (http://www.try-db.org) for providing the data on flower traits. Séverin Hatt, Roel Uyttenbroeck, and more generally this research, were funded by the Cellule d’Appui à la Recherche et à l’Enseignement (CARE) AgricultureIsLife (University of Liège).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11829_2017_9567_MOESM1_ESM.tif (99 kb)
Supplementary material 1 (TIFF 99 kb). Figure S1. Total number of a) Meligethes spp. and b) their parasitoids trapped at peak (14 and 21 May), as well as of c) Ceutorhynchus spp. and d) their parasitoids at peak (11 June) in each plot
11829_2017_9567_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 18 kb)
11829_2017_9567_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 kb)
11829_2017_9567_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 21 kb)
11829_2017_9567_MOESM5_ESM.docx (17 kb)
Supplementary material 5 (DOCX 16 kb)

References

  1. Baldi I, Cordier S, Coumoul X et al (2013) Pesticides: effets sur la santé. INSERM Institut national de la santé et de la recherche médicale, ParisGoogle Scholar
  2. Balzan MV, Moonen A-C (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol Exp Appl 150:45–65. doi: 10.1111/eea.12142 CrossRefGoogle Scholar
  3. Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31. doi: 10.1016/j.biocontrol.2013.06.006 CrossRefGoogle Scholar
  4. Balzan MV, Bocci G, Moonen A-C (2014) Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J Insect Conserv 18:713–728. doi: 10.1007/s10841-014-9680-2 CrossRefGoogle Scholar
  5. Barbosa PA (1998) Conservation biological control. Academic Press, San DiegoGoogle Scholar
  6. Begum M, Gurr GM, Wratten SD, Nicol HI (2004) Flower color affects tri-trophic-level biocontrol interactions. Biol Control 30:584–590. doi: 10.1016/j.biocontrol.2004.03.005 CrossRefGoogle Scholar
  7. Bianchi FJJA, Wäckers F (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408. doi: 10.1016/j.biocontrol.2008.04.010 CrossRefGoogle Scholar
  8. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  9. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540. doi: 10.1111/j.1654-1103.2005.tb02393.x CrossRefGoogle Scholar
  10. Büchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric Ecosyst Environ 90:255–263. doi: 10.1016/S0167-8809(01)00213-4 CrossRefGoogle Scholar
  11. Campbell AJ, Biesmeijer JC, Varma V, Wäckers FL (2012) Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl Ecol 13:363–370. doi: 10.1016/j.baae.2012.04.003 CrossRefGoogle Scholar
  12. Carrié RJG, George DR, Wäckers FL (2012) Selection of floral resources to optimise conservation of agriculturally-functional insect groups. J Insect Conserv 16:635–640. doi: 10.1007/s10841-012-9508-x CrossRefGoogle Scholar
  13. Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508. doi: 10.1016/0042-6989(94)90151-1 CrossRefPubMedGoogle Scholar
  14. Colignon P, Hastir P, Gaspar C, Francis F (2001) Effects of insecticide treatments on insect density and diversity in vegetable open fields. Meded Van Fac Landbouwkd En Toegepaste Biol Wet Rijksuniv Te Gent 66:403–411Google Scholar
  15. Cook SM, Skellern MP, Döring TF, Pickett JA (2013) Red oilseed rape? The potential for manipulation of petal colour in control strategies for the pollen beetle (Meligethes aeneus). Arthropod-Plant Interact 7:249–258. doi: 10.1007/s11829-013-9252-5 CrossRefGoogle Scholar
  16. Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  17. Dı́az S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi: 10.1016/S0169-5347(01)02283-2 CrossRefGoogle Scholar
  18. Döring TF, Archetti M, Hardie J (2009) Autumn leaves seen through herbivore eyes. Proc R Soc Lond B Biol Sci 276:121–127. doi: 10.1098/rspb.2008.0858 CrossRefGoogle Scholar
  19. Döring TF, Skellern M, Watts N, Cook SM (2012) Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: nitidulidae). Physiol Entomol 37:360–368. doi: 10.1111/j.1365-3032.2012.00850.x CrossRefGoogle Scholar
  20. Ekroos J, Olsson O, Rundlöf M et al (2014) Optimizing agri-environment schemes for biodiversity, ecosystem services or both? Biol Conserv 172:65–71. doi: 10.1016/j.biocon.2014.02.013 CrossRefGoogle Scholar
  21. European Commission (2005) Agri-environment measures. Overview on general principles, types of measures and application. European Commission, Directorate General for Agriculture and Rural DevelopmentGoogle Scholar
  22. Ferguson AW, Williams IH, Castle LM, Skellern MP (2010) Key parasitoids of the pests of oilseed rape in Europe: A guide to their identification. In: Williams IH (ed) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, The Netherlands, pp 77–114CrossRefGoogle Scholar
  23. Fiedler AK, Landis DA (2007a) Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants. Environ Entomol 36:878–886. doi: 10.1093/ee/36.4.878 CrossRefPubMedGoogle Scholar
  24. Fiedler AK, Landis DA (2007b) Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ Entomol 36:751–765. doi: 10.1093/ee/36.4.751 CrossRefPubMedGoogle Scholar
  25. Free JB, Williams IH (1978) The responses of the pollen beetle, Meligethes aeneus, and the seed weevil, Ceuthorhynchus assimilis, to oil-seed rape, Brassica napus, and other plants. J Appl Ecol 15:761–774. doi: 10.2307/2402773 CrossRefGoogle Scholar
  26. Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. doi: 10.1016/j.baae.2009.12.001 CrossRefGoogle Scholar
  27. Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118. doi: 10.1007/s11356-014-3180-5 CrossRefGoogle Scholar
  28. Haaland C, Naisbit RE, Bersier L-F (2011) Sown wildflower strips for insect conservation: a review. Insect Conserv Divers 4:60–80. doi: 10.1111/j.1752-4598.2010.00098.x CrossRefGoogle Scholar
  29. Hanson HI, Smith HG, Hedlund K (2015) Agricultural management reduces emergence of pollen beetle parasitoids. Agric Ecosyst Environ 205:9–14. doi: 10.1016/j.agee.2015.03.001 CrossRefGoogle Scholar
  30. Hatt S, Uyttenbroeck R, Lopes T et al (2015) Do wildflower strips favor insect pest populations at field margins? Agric Agric Sci Procedia 6:30–37. doi: 10.1016/j.aaspro.2015.08.034 CrossRefGoogle Scholar
  31. Horton DR, Broers DA, Lewis RR et al (2003) Effects of mowing frequency on densities of natural enemies in three Pacific Northwest pear orchards. Entomol Exp Appl 106:135–145. doi: 10.1046/j.1570-7458.2003.00018.x CrossRefGoogle Scholar
  32. Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735. doi: 10.1093/ee/24.6.1726 CrossRefGoogle Scholar
  33. Jervis MA, Kidd NAC, Fitton MG et al (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105. doi: 10.1080/00222939300770051 CrossRefGoogle Scholar
  34. Jönsson M (2005) Responses to oilseed rape and cotton volatiles in insect herbivores and parasitoids. Doctoral thesis, Swedish University of Agricultural SciencesGoogle Scholar
  35. Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x CrossRefGoogle Scholar
  36. Kirk-Spriggs AH (1996) Pollen beetles: Coleoptera: Kateretidae and Nitidulidae: Meligethinae. Royal Entomological Society, LondonGoogle Scholar
  37. Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second Silent Spring? Nature 400:611–612. doi: 10.1038/23127 CrossRefGoogle Scholar
  38. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi: 10.1890/08-2244.1 CrossRefPubMedGoogle Scholar
  39. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R packageGoogle Scholar
  40. Lambinon J, Delvosalle L, Duvigneaud J (2004) Nouvelle flore de Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des régions voisines., 5th edn. Jardin Botanique National de Belgique, MeiseGoogle Scholar
  41. Lambinon J, De Langhe J-E, Delvosalle L, Duvigneaud J (2008) Flora van België, het Groothertogdom Luxemburg. Noord-Frankrijk en de aangrenzende gebieden, Nationale Plantentuin van BelgiëGoogle Scholar
  42. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. doi: 10.1146/annurev.ento.45.1.175 CrossRefPubMedGoogle Scholar
  43. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi: 10.1046/j.1365-2435.2002.00664.x CrossRefGoogle Scholar
  44. Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147. doi: 10.1111/j.1365-2435.2007.01339.x Google Scholar
  45. Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Progress in Biological Control, Springer, The NetherlandsGoogle Scholar
  46. Morris MG (2008) True Weevils (Part II): (Coleoptera: Curculionidae, Ceutorhynchinae). Royal Entomological Society, LondonGoogle Scholar
  47. Müller H (1881) Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassungen an dieselben. W. Engelmann, LeipzigGoogle Scholar
  48. Nilsson C (2003) Parasitoids of the pollen beetles. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell, Oxford, pp 73–86CrossRefGoogle Scholar
  49. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. doi: 10.1017/S0021859605005708 CrossRefGoogle Scholar
  50. Oksanen J, Guillaume Blanchet F, Kindt R, et al (2015) Vegan: community ecology package. R packageGoogle Scholar
  51. Ômura H, Honda K, Hayashi N (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J Chem Ecol 25:1895–1906. doi: 10.1023/A:1020990018111 CrossRefGoogle Scholar
  52. Patt JM, Hamilton GC, Lashomb JH (1997) Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomol Exp Appl 83:21–30. doi: 10.1046/j.1570-7458.1997.00153.x CrossRefGoogle Scholar
  53. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi: 10.1111/j.1461-0248.2006.00911.x CrossRefPubMedGoogle Scholar
  54. Rusch A, Bommarco R, Jonsson M et al (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354. doi: 10.1111/1365-2664.12055 CrossRefGoogle Scholar
  55. Sivinski J, Wahl D, Holler T et al (2011) Conserving natural enemies with flowering plants: estimating floral attractiveness to parasitic Hymenoptera and attraction’s relationship to flower and plant morphology. Biol Control 58:208–214. doi: 10.1016/j.biocontrol.2011.05.002 CrossRefGoogle Scholar
  56. Tansey JA, Dosdall LM, Keddie BA, Noble SD (2010) Contributions of visual cues to cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: curculionidae), resistance in novel host genotypes. Crop Prot 29:476–481. doi: 10.1016/j.cropro.2009.11.005 CrossRefGoogle Scholar
  57. Tscharntke T, Karp DS, Chaplin-Kramer R et al (2016) When natural habitat fails to enhance biological pest control – Five hypotheses. Biol Conserv In press. doi: 10.1016/j.biocon.2016.10.001 Google Scholar
  58. Tschumi M, Albrecht M, Entling MH, Jacot K (2015) High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc R Soc B 282:20151369. doi: 10.1098/rspb.2015.1369 CrossRefPubMedCentralGoogle Scholar
  59. Tschumi M, Albrecht M, Bärtschi C et al (2016) Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric Ecosyst Environ 220:97–103. doi: 10.1016/j.agee.2016.01.001 CrossRefGoogle Scholar
  60. Ulber B (2003) Parasitoids of Ceutorhynchid stem weevils. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK, pp 87–96CrossRefGoogle Scholar
  61. Ulber B, Williams IH, Luik A et al (2010) Parasitoids of oilseed rape pests in Europe: Key species for conservation biocontrol. In: Williams IH (ed) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, The Netherlands, pp 45–76CrossRefGoogle Scholar
  62. Uyttenbroeck R, Hatt S, Piqueray J et al (2015) Creating perennial flower strips: think functional! Agric Agric Sci Procedia 6:95–101. doi: 10.1016/j.aaspro.2015.08.044 CrossRefGoogle Scholar
  63. Uyttenbroeck R, Hatt S, Paul A et al (2016) Pros and cons of flowers strips for farmers: a review. Biotechnol Agron Soc Environ 20:225–235Google Scholar
  64. Van Rijn PCJ, Wäckers FL (2016) Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J Appl Ecol 53:925–933. doi: 10.1111/1365-2664.12605 CrossRefGoogle Scholar
  65. Vattala HD, Wratten SD, Vattala CB et al (2006) The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol Control 39:179–185. doi: 10.1016/j.biocontrol.2006.06.003 CrossRefGoogle Scholar
  66. Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. doi: 10.1111/j.0030-1299.2007.15559.x CrossRefGoogle Scholar
  67. Wäckers FL (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649. doi: 10.1016/0022-1910(94)90091-4 CrossRefGoogle Scholar
  68. Williams IH (2003) Parasitoids of the cabbage seed weevil. In: Alford DV (ed) Biocontrol of Oilseed Rape Pests. Blackwell, Oxford, pp 97–112CrossRefGoogle Scholar
  69. Williams IH (2010) The major insect pests of oilseed rape in Europe and their management: an overview. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer, The Netherlands, pp 1–43CrossRefGoogle Scholar
  70. Williams IH, Cook SM (2010) Crop location by oilseed rape pests and host location by their parasitoids. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer, The Netherlands, pp 215–244CrossRefGoogle Scholar
  71. Wratten SD, Bowie MH, Hickman JM et al (2003) Field boundaries as barriers to movement of hover flies (Diptera: syrphidae) in cultivated land. Oecologia 134:605–611. doi: 10.1007/s00442-002-1128-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Séverin Hatt
    • 1
    • 2
    • 3
  • Roel Uyttenbroeck
    • 1
    • 4
  • Thomas Lopes
    • 2
  • Ju Lian Chen
    • 3
  • Julien Piqueray
    • 5
  • Arnaud Monty
    • 4
  • Frédéric Francis
    • 2
  1. 1.TERRA – AgricultureIsLife, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  2. 2.Functional and Evolutionary Entomology, Department of Agronomy, Biology and Chemistry, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  3. 3.State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
  4. 4.Biodiversity and Landscapes, Department of Biosystems Engineering, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  5. 5.Natagriwal AsblGemblouxBelgium

Personalised recommendations