Skip to main content
Log in

Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Reducing the use of insecticides is an important issue for agriculture today. Sowing wildflower strips along field margins or within crops represents a promising tool to support natural enemy populations in agricultural landscapes and, thus, enhance conservation biological control. However, it is important to sow appropriate flower species that attract natural enemies efficiently. The presence of prey and hosts may also guide natural enemies to wildflower strips, potentially preventing them from migrating into adjacent crops. Here, we assessed how seven flower traits, along with the abundance of pollen beetles (Meligethes spp., Coleoptera: Nitidulidae) and true weevils (Ceutorhynchus spp., Coleoptera: Curculionidae), affect the density of parasitoids of these two coleopterans in wildflower strips sown in an oilseed rape field in Gembloux (Belgium). Only flower traits, not host (i.e. pollen beetles and true weevils) abundance, significantly affected the density of parasitoids. Flower colour, ultraviolet reflectance and nectar availability were the main drivers affecting parasitoids. These results demonstrate how parasitoids of oilseed rape pests react to flower cues under field conditions. Similar analyses on the pests and natural enemies of other crops are expected to help to develop perennial flower mixtures able to enhance biological control throughout a rotation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baldi I, Cordier S, Coumoul X et al (2013) Pesticides: effets sur la santé. INSERM Institut national de la santé et de la recherche médicale, Paris

    Google Scholar 

  • Balzan MV, Moonen A-C (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol Exp Appl 150:45–65. doi:10.1111/eea.12142

    Article  Google Scholar 

  • Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31. doi:10.1016/j.biocontrol.2013.06.006

    Article  Google Scholar 

  • Balzan MV, Bocci G, Moonen A-C (2014) Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J Insect Conserv 18:713–728. doi:10.1007/s10841-014-9680-2

    Article  Google Scholar 

  • Barbosa PA (1998) Conservation biological control. Academic Press, San Diego

    Book  Google Scholar 

  • Begum M, Gurr GM, Wratten SD, Nicol HI (2004) Flower color affects tri-trophic-level biocontrol interactions. Biol Control 30:584–590. doi:10.1016/j.biocontrol.2004.03.005

    Article  Google Scholar 

  • Bianchi FJJA, Wäckers F (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408. doi:10.1016/j.biocontrol.2008.04.010

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540. doi:10.1111/j.1654-1103.2005.tb02393.x

    Article  Google Scholar 

  • Büchi R (2002) Mortality of pollen beetle (Meligethes spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric Ecosyst Environ 90:255–263. doi:10.1016/S0167-8809(01)00213-4

    Article  Google Scholar 

  • Campbell AJ, Biesmeijer JC, Varma V, Wäckers FL (2012) Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl Ecol 13:363–370. doi:10.1016/j.baae.2012.04.003

    Article  Google Scholar 

  • Carrié RJG, George DR, Wäckers FL (2012) Selection of floral resources to optimise conservation of agriculturally-functional insect groups. J Insect Conserv 16:635–640. doi:10.1007/s10841-012-9508-x

    Article  Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res 34:1489–1508. doi:10.1016/0042-6989(94)90151-1

    Article  CAS  PubMed  Google Scholar 

  • Colignon P, Hastir P, Gaspar C, Francis F (2001) Effects of insecticide treatments on insect density and diversity in vegetable open fields. Meded Van Fac Landbouwkd En Toegepaste Biol Wet Rijksuniv Te Gent 66:403–411

    CAS  Google Scholar 

  • Cook SM, Skellern MP, Döring TF, Pickett JA (2013) Red oilseed rape? The potential for manipulation of petal colour in control strategies for the pollen beetle (Meligethes aeneus). Arthropod-Plant Interact 7:249–258. doi:10.1007/s11829-013-9252-5

    Article  Google Scholar 

  • Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dı́az S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi:10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Döring TF, Archetti M, Hardie J (2009) Autumn leaves seen through herbivore eyes. Proc R Soc Lond B Biol Sci 276:121–127. doi:10.1098/rspb.2008.0858

    Article  Google Scholar 

  • Döring TF, Skellern M, Watts N, Cook SM (2012) Colour choice behaviour in the pollen beetle Meligethes aeneus (Coleoptera: nitidulidae). Physiol Entomol 37:360–368. doi:10.1111/j.1365-3032.2012.00850.x

    Article  Google Scholar 

  • Ekroos J, Olsson O, Rundlöf M et al (2014) Optimizing agri-environment schemes for biodiversity, ecosystem services or both? Biol Conserv 172:65–71. doi:10.1016/j.biocon.2014.02.013

    Article  Google Scholar 

  • European Commission (2005) Agri-environment measures. Overview on general principles, types of measures and application. European Commission, Directorate General for Agriculture and Rural Development

  • Ferguson AW, Williams IH, Castle LM, Skellern MP (2010) Key parasitoids of the pests of oilseed rape in Europe: A guide to their identification. In: Williams IH (ed) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, The Netherlands, pp 77–114

    Chapter  Google Scholar 

  • Fiedler AK, Landis DA (2007a) Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants. Environ Entomol 36:878–886. doi:10.1093/ee/36.4.878

    Article  CAS  PubMed  Google Scholar 

  • Fiedler AK, Landis DA (2007b) Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environ Entomol 36:751–765. doi:10.1093/ee/36.4.751

    Article  CAS  PubMed  Google Scholar 

  • Free JB, Williams IH (1978) The responses of the pollen beetle, Meligethes aeneus, and the seed weevil, Ceuthorhynchus assimilis, to oil-seed rape, Brassica napus, and other plants. J Appl Ecol 15:761–774. doi:10.2307/2402773

    Article  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. doi:10.1016/j.baae.2009.12.001

    Article  CAS  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118. doi:10.1007/s11356-014-3180-5

    Article  CAS  Google Scholar 

  • Haaland C, Naisbit RE, Bersier L-F (2011) Sown wildflower strips for insect conservation: a review. Insect Conserv Divers 4:60–80. doi:10.1111/j.1752-4598.2010.00098.x

    Article  Google Scholar 

  • Hanson HI, Smith HG, Hedlund K (2015) Agricultural management reduces emergence of pollen beetle parasitoids. Agric Ecosyst Environ 205:9–14. doi:10.1016/j.agee.2015.03.001

    Article  Google Scholar 

  • Hatt S, Uyttenbroeck R, Lopes T et al (2015) Do wildflower strips favor insect pest populations at field margins? Agric Agric Sci Procedia 6:30–37. doi:10.1016/j.aaspro.2015.08.034

    Article  Google Scholar 

  • Horton DR, Broers DA, Lewis RR et al (2003) Effects of mowing frequency on densities of natural enemies in three Pacific Northwest pear orchards. Entomol Exp Appl 106:135–145. doi:10.1046/j.1570-7458.2003.00018.x

    Article  Google Scholar 

  • Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735. doi:10.1093/ee/24.6.1726

    Article  Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG et al (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105. doi:10.1080/00222939300770051

    Article  Google Scholar 

  • Jönsson M (2005) Responses to oilseed rape and cotton volatiles in insect herbivores and parasitoids. Doctoral thesis, Swedish University of Agricultural Sciences

  • Kattge J, Díaz S, Lavorel S et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935. doi:10.1111/j.1365-2486.2011.02451.x

    Article  Google Scholar 

  • Kirk-Spriggs AH (1996) Pollen beetles: Coleoptera: Kateretidae and Nitidulidae: Meligethinae. Royal Entomological Society, London

    Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second Silent Spring? Nature 400:611–612. doi:10.1038/23127

    Article  CAS  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package

  • Lambinon J, Delvosalle L, Duvigneaud J (2004) Nouvelle flore de Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des régions voisines., 5th edn. Jardin Botanique National de Belgique, Meise

  • Lambinon J, De Langhe J-E, Delvosalle L, Duvigneaud J (2008) Flora van België, het Groothertogdom Luxemburg. Noord-Frankrijk en de aangrenzende gebieden, Nationale Plantentuin van België

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. doi:10.1146/annurev.ento.45.1.175

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147. doi:10.1111/j.1365-2435.2007.01339.x

    Article  Google Scholar 

  • Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Progress in Biological Control, Springer, The Netherlands

    Google Scholar 

  • Morris MG (2008) True Weevils (Part II): (Coleoptera: Curculionidae, Ceutorhynchinae). Royal Entomological Society, London

    Google Scholar 

  • Müller H (1881) Alpenblumen, ihre Befruchtung durch Insekten und ihre Anpassungen an dieselben. W. Engelmann, Leipzig

    Google Scholar 

  • Nilsson C (2003) Parasitoids of the pollen beetles. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell, Oxford, pp 73–86

    Chapter  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. doi:10.1017/S0021859605005708

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, et al (2015) Vegan: community ecology package. R package

  • Ômura H, Honda K, Hayashi N (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J Chem Ecol 25:1895–1906. doi:10.1023/A:1020990018111

    Article  Google Scholar 

  • Patt JM, Hamilton GC, Lashomb JH (1997) Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomol Exp Appl 83:21–30. doi:10.1046/j.1570-7458.1997.00153.x

    Article  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614. doi:10.1111/j.1461-0248.2006.00911.x

    Article  PubMed  Google Scholar 

  • Rusch A, Bommarco R, Jonsson M et al (2013) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354. doi:10.1111/1365-2664.12055

    Article  Google Scholar 

  • Sivinski J, Wahl D, Holler T et al (2011) Conserving natural enemies with flowering plants: estimating floral attractiveness to parasitic Hymenoptera and attraction’s relationship to flower and plant morphology. Biol Control 58:208–214. doi:10.1016/j.biocontrol.2011.05.002

    Article  Google Scholar 

  • Tansey JA, Dosdall LM, Keddie BA, Noble SD (2010) Contributions of visual cues to cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: curculionidae), resistance in novel host genotypes. Crop Prot 29:476–481. doi:10.1016/j.cropro.2009.11.005

    Article  Google Scholar 

  • Tscharntke T, Karp DS, Chaplin-Kramer R et al (2016) When natural habitat fails to enhance biological pest control – Five hypotheses. Biol Conserv In press. doi:10.1016/j.biocon.2016.10.001

    Article  Google Scholar 

  • Tschumi M, Albrecht M, Entling MH, Jacot K (2015) High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc R Soc B 282:20151369. doi:10.1098/rspb.2015.1369

    Article  PubMed Central  Google Scholar 

  • Tschumi M, Albrecht M, Bärtschi C et al (2016) Perennial, species-rich wildflower strips enhance pest control and crop yield. Agric Ecosyst Environ 220:97–103. doi:10.1016/j.agee.2016.01.001

    Article  Google Scholar 

  • Ulber B (2003) Parasitoids of Ceutorhynchid stem weevils. In: Alford DV (ed) Biocontrol of oilseed rape pests. Blackwell, Oxford, UK, pp 87–96

    Chapter  Google Scholar 

  • Ulber B, Williams IH, Luik A et al (2010) Parasitoids of oilseed rape pests in Europe: Key species for conservation biocontrol. In: Williams IH (ed) Biocontrol-Based Integrated Management of Oilseed Rape Pests. Springer, The Netherlands, pp 45–76

    Chapter  Google Scholar 

  • Uyttenbroeck R, Hatt S, Piqueray J et al (2015) Creating perennial flower strips: think functional! Agric Agric Sci Procedia 6:95–101. doi:10.1016/j.aaspro.2015.08.044

    Article  Google Scholar 

  • Uyttenbroeck R, Hatt S, Paul A et al (2016) Pros and cons of flowers strips for farmers: a review. Biotechnol Agron Soc Environ 20:225–235

    Google Scholar 

  • Van Rijn PCJ, Wäckers FL (2016) Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J Appl Ecol 53:925–933. doi:10.1111/1365-2664.12605

    Article  Google Scholar 

  • Vattala HD, Wratten SD, Vattala CB et al (2006) The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol Control 39:179–185. doi:10.1016/j.biocontrol.2006.06.003

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892. doi:10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Wäckers FL (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649. doi:10.1016/0022-1910(94)90091-4

    Article  Google Scholar 

  • Williams IH (2003) Parasitoids of the cabbage seed weevil. In: Alford DV (ed) Biocontrol of Oilseed Rape Pests. Blackwell, Oxford, pp 97–112

    Chapter  Google Scholar 

  • Williams IH (2010) The major insect pests of oilseed rape in Europe and their management: an overview. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer, The Netherlands, pp 1–43

    Chapter  Google Scholar 

  • Williams IH, Cook SM (2010) Crop location by oilseed rape pests and host location by their parasitoids. In: Williams IH (ed) Biocontrol-based integrated management of oilseed rape pests. Springer, The Netherlands, pp 215–244

    Chapter  Google Scholar 

  • Wratten SD, Bowie MH, Hickman JM et al (2003) Field boundaries as barriers to movement of hover flies (Diptera: syrphidae) in cultivated land. Oecologia 134:605–611. doi:10.1007/s00442-002-1128-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the technical support provided by the Experimental Farm of Gembloux Agro-Bio Tech (University of Liège), Marc Dufrêne for its precious help regarding the statistical analyses, the Belgian National Fund for Scientific Research (FNRS) for providing a PhD fellowship to Thomas Lopes and the TRY initiative on plant traits (http://www.try-db.org) for providing the data on flower traits. Séverin Hatt, Roel Uyttenbroeck, and more generally this research, were funded by the Cellule d’Appui à la Recherche et à l’Enseignement (CARE) AgricultureIsLife (University of Liège).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverin Hatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Miriama Malcicka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11829_2017_9567_MOESM1_ESM.tif

Supplementary material 1 (TIFF 99 kb). Figure S1. Total number of a) Meligethes spp. and b) their parasitoids trapped at peak (14 and 21 May), as well as of c) Ceutorhynchus spp. and d) their parasitoids at peak (11 June) in each plot

Supplementary material 2 (DOCX 18 kb)

Supplementary material 3 (DOCX 18 kb)

Supplementary material 4 (DOCX 21 kb)

Supplementary material 5 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatt, S., Uyttenbroeck, R., Lopes, T. et al. Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions 12, 787–797 (2018). https://doi.org/10.1007/s11829-017-9567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9567-8

Keywords