Skip to main content

Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature

Abstract

It has been suggested that insectivorous birds may be guided by herbivore-induced plant volatiles (HIPVs) to herbivore-rich trees with herbivorous damage. The HIPV production in plants is partly mediated by jasmonic acid signalling pathway. Methyl jasmonate (MeJA) was proved to be a suitable agent for induction of HIPVs similar to those induced by herbivorous insects in many plant species. We studied the effects of methyl jasmonate on volatile emission and natural enemy attraction using mature grey willow (Salix cinerea) under natural conditions in Czech Republic. We treated 12 experimental shrubs with 30 mM MeJA and completed the experiment with 12 control shrubs. We monitored attacks by natural predators with artificial plasticine caterpillars which were checked daily. Birds most often pecked the caterpillars exposed on MeJA-treated shrubs and this attractiveness differed significantly from control. Attractiveness of MeJA-treated shrubs did not differ significantly from control shrubs for arthropod predators. Spraying MeJA on grey willows resulted in significantly higher production of α-pinene, β-pinene, 3-carene, limonene and β-ocimene. There was a marginally significant positive correlation between the predation rate by birds and relative change in α-pinene emissions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  2. Amo L, Dicke M, Visser ME (2016) Are naïve birds attracted to herbivore-induced plant defences? Behaviour 153:353–366

    Article  Google Scholar 

  3. Böhm SM, Wells K, Kalko EKV (2011) Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS ONE 6(4):e17857

    Article  PubMed  PubMed Central  Google Scholar 

  4. Degenhardt DC, Lincoln DE (2006) Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J Chem Ecol 32:725–743

    CAS  Article  PubMed  Google Scholar 

  5. Dicke M (2015) Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J Indian Inst Sci 95:35–42

    Google Scholar 

  6. Dicke M, van Loon JJ, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    CAS  Article  PubMed  Google Scholar 

  7. Drozdová M, Šipoš J, Drozd P (2013) Key factors affecting the predation risk on insects on leaves in temperate floodplain forest. Eur J Entomol 3:469–476

    Article  Google Scholar 

  8. Farag MA, Pare PW (2002) C 6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    CAS  Article  PubMed  Google Scholar 

  9. Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJ, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS ONE 7:e43607

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Filella I, Peñuelas J, Llusià J (2006) Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytol 169:135–144

    CAS  Article  PubMed  Google Scholar 

  11. Ghirardo A, Heller W, Fladung M, Schnitzler JP, Schroeder H (2012) Function of defensive volatiles in pedunculate oak (Quercus robur) is tricked by the moth Tortrix viridana. Plant Cell Environ 35:2192–2207

    CAS  Article  PubMed  Google Scholar 

  12. Gould N, Reglinski T, Northcott GL, Spiers M, Taylor JT (2009) Physiological and biochemical responses in Pinus radiata seedlings associated with methyl jasmonate-induced resistance to Diplodia pinea. Physiol Mol Plant Pathol 74:121–128

    CAS  Article  Google Scholar 

  13. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617

    Article  Google Scholar 

  14. Havko NE, Major IT, Jewell JB, Attaran E, Howe GA (2016) Control of carbon assimilation and partitioning by jasmonate: an accounting of growth–defense tradeoffs. Plants 5:7

    Article  PubMed Central  Google Scholar 

  15. Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. P Natl Acad Sci USA 104:5467–5472

    CAS  Article  Google Scholar 

  16. Hopke J, Donath J, Blechert S, Boland W (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett 352:146–150

    CAS  Article  PubMed  Google Scholar 

  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometric J 50:346–363

    Article  Google Scholar 

  18. Howe A, Lövei GL, Nachman G (2009) Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol Exp Appl 131:325–329

    Article  Google Scholar 

  19. Hristova V, Popova L (2002) Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 40:567–574

    CAS  Article  Google Scholar 

  20. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  Article  PubMed  Google Scholar 

  21. Kigathi RN, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Weisser WW (2009) Emission of volatile organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol 35:1335–1348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Koski TM, Laaksonen T, Mäntylä E, Ruuskanen S, Li T, Girón-Calva PS, Huttunen L, Blande JD, Holopainen JK, Klemola T (2015) Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121:1131–1144

    Article  Google Scholar 

  23. Low PA, Sam K, McArthur C, Posa MRC, Hochuli DF (2014) Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomol Exp Appl 152:120–126

    Article  Google Scholar 

  24. Lundborg L, Nordlander G, Björklund N, Nordenhem H, Borg-Karlson A-K (2016) Methyl jasmonate-induced monoterpenes in Scots pine and Norway spruce tissues affect pine weevil orientation. J Chem Ecol 42:1237–1246

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Mäntylä E, Klemola T, Haukioja E (2004) Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol Lett 7:915–918

    Article  Google Scholar 

  26. Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008a) From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS ONE 3:e2832

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mäntylä E, Klemola T, Sirkiä P, Laaksonen T (2008b) Low light reflectance may explain the attraction of birds to defoliated trees. Behav Ecol 19:325–330

    Article  Google Scholar 

  28. Mäntylä E, Blande JD, Klemola T (2014) Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature? Arthropod Plant Interact 8:143–153

    Article  Google Scholar 

  29. Mäntylä E, Kleier S, Kipper S, Hilker M (2017) The attraction of insectivorous tit species to herbivore-damaged Scots pines. J Ornithol 158(2):479–491

    Article  Google Scholar 

  30. Pareja M, Mohib A, Birkett MA, Dufour S, Glinwood RT (2009) Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Anim Behav 77:901–909

    Article  Google Scholar 

  31. Posa MRC, Sodhi NS, Koh LP (2007) Predation on artificial nests and caterpillar models across a disturbance gradient in Subic Bay, Philippines. J Trop Ecol 23:27–33

    Article  Google Scholar 

  32. Roslin T, Hardwick B, Novotny V, Andrew N, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake T, Cameron E, Dáttilo W, Donosov D, Gray C, Hik DS, Hill S, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis O, Mwesige I, Nakamura A, Nell CS, Petry WK, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchankova A, van Nouhuis S, Vandvik D, Weissflog A, Zhukovich V, Slade E (2017) Higher predation risk for insect prey at lower latitudes. Science 356:742–744

    CAS  Article  PubMed  Google Scholar 

  33. Sam K, Koane B, Novotny V (2015a) Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography 38:293–300

    Article  Google Scholar 

  34. Sam K, Remmel T, Molleman F (2015b) Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: an experiment using clay and dough dummies with green colourants on various plant species. Entomol Exp Appl 157:317–324

    Article  Google Scholar 

  35. Schiebe C, Hammerbacher A, Birgersson G, Witzell J, Brodelius PE, Gershenzon J, Hansson BS, Krokene P, Schlyter F (2012) Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170:183–198

    Article  PubMed  Google Scholar 

  36. Team RC (2013) R: a language and environment for statistical computing

  37. Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    CAS  Article  Google Scholar 

  38. Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    CAS  Article  PubMed  Google Scholar 

  39. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    CAS  Article  PubMed  Google Scholar 

  40. Tollsten L, Knudsen JT (1992) Floral scent in dioecious Salix (Salicaceae)—a cue determining the pollination system? Plant Syst Evol 182:229–237

    Article  Google Scholar 

  41. Tvardikova K, Novotny V (2012) Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. J Trop Ecol 28:331–341

    Article  Google Scholar 

  42. Volf M, Julkunen-Tiitto R, Hrcek J, Novotny V (2015) Insect herbivores drive the loss of unique chemical defense in willows. Entomol Exp Appl 156:88–98

    CAS  Article  Google Scholar 

  43. Zhang Y, Xie Y, Xue J, Peng G, Wang X (2009) Effect of volatile emissions, especially α-Pinene, from persimmon trees infested by japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ Entomol 38:1439–1445

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by The Czech Science Foundation project No. 14-32024P. We are thankful to our colleagues Legi Sam and Philip Butterill for English edits.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katerina Sam.

Additional information

Handling Editor: Jarmo Holopainen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1896 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mrazova, A., Sam, K. Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature. Arthropod-Plant Interactions 12, 1–8 (2018). https://doi.org/10.1007/s11829-017-9558-9

Download citation

Keywords

  • α-Pinene
  • β-Ocimene
  • Herbivory
  • Herbivore-induced volatile compounds
  • Olfaction
  • Predation
  • Volatile organic compounds