Advertisement

Arthropod-Plant Interactions

, Volume 11, Issue 6, pp 743–754 | Cite as

Flowering banker plants for the delivery of multiple agroecosystem services

Original Paper

Abstract

Ecosystem services provided by agricultural ecosystems include natural pest control and pollination, and these are important to ensure crop productivity. This study investigates the use of the banker plant Calendula officinalis L. to provide multiple ecosystem services by increasing the abundance of natural enemies for biological control of tomato pests, providing forage resources to wild bees, and improving crop yield. C. officinalis was selected for this experiment as it is used as a banker plant for Dicyphini (Hemiptera: Miridae) predators. Strips of flowering C. officinalis were established in the field edges of tomato fields and arthropod visitation to C. officinalis strips and tomato was measured. Crop damage from multiple pests of tomato was assessed in fields with C. officinalis strips and control sites. The contribution of pollination to crop yield was assessed through a pollinator exclusion experiment. The inclusion of C. officinalis in tomato fields was associated with increased abundance of Dicyphini, parasitoids, bees and other arthropod groups within these strips. A reduction in the total leaf crop damage from Lepidoptera pests was recorded in fields with C. officinalis strips. Increased fruit set and biomass were recorded in open-pollinated tomato but this was not significantly different between control and C. officinalis fields. Results presented here demonstrate that the inclusion of a companion plant can improve the conservation of beneficial arthropods and the delivery of agroecosystem services but efficacy is likely to be improved with the addition of plants, with different functional traits, and with improved attractiveness to crop pollinators.

Keywords

Calendula officinalis Dicyphini Natural enemies Parasitoids Pollinators Solanum lycopersicum 

Notes

Acknowledgements

I would like to thank Deryn Haidon, Rowena Calleja and Mario Ellul (Institute of Applied Sciences, MCAST) and Joseph Borg, Darren Borg and the staff of the Għammieri Experimental Farm (Ministry for Sustainable Development, the Environment and Climate Change), for their technical assistance. I am grateful to Barbara L. Ingegno and Luciana Tavella (Università degli Studi di Torino) for the identification of the Dicyphini. Grateful thanks to two anonymous reviewers for comments and suggestions.

Supplementary material

11829_2017_9544_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (DOCX 149 kb)

References

  1. Abian YVF, Andau NAS, Ruggisser ODTB et al (2014) Plant diversity in a nutshell: testing for small-scale effects on trap nesting wild bees and wasps. Ecosphere 5:18. doi: 10.1890/ES13-00375.1 CrossRefGoogle Scholar
  2. Balzan MV, Moonen A-C (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol Exp Appl 150:45–65CrossRefGoogle Scholar
  3. Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31. doi: 10.1016/j.biocontrol.2013.06.006 CrossRefGoogle Scholar
  4. Balzan MV, Bocci G, Moonen A-C (2014) Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J Insect Conserv. doi: 10.1007/s10841-014-9680-2 Google Scholar
  5. Balzan MV, Bocci G, Moonen A-C (2016a) Landscape complexity and field margin vegetation diversity enhance natural enemies and reduce herbivory by Lepidoptera pests on tomato crop. Biocontrol 61:141–154CrossRefGoogle Scholar
  6. Balzan MV, Bocci G, Moonen A (2016b) Utilisation of plant functional diversity in wild flower strips for the delivery of multiple agroecosystem services. Entomol Exp Appl 158:304–319CrossRefGoogle Scholar
  7. Bartomeus I, Potts SG, Steffan-Dewenter I et al (2014) Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2:e328CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x CrossRefPubMedGoogle Scholar
  9. Bianchi FJJA, Booji CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc Lond B 273:1715–1727CrossRefGoogle Scholar
  10. Bianchi FJJA, Mikos V, Brussaard L et al (2013) Opportunities and limitations for functional agrobiodiversity in the European context. Environ Sci Policy 27:223–231. doi: 10.1016/j.envsci.2012.12.014 CrossRefGoogle Scholar
  11. Biondi A, Zappalà L, Di Mauro A et al (2015) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol. doi: 10.1007/s10526-015-9700-5 Google Scholar
  12. Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51:890–898. doi: 10.1111/1365-2664.12257 CrossRefGoogle Scholar
  13. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. doi: 10.1016/j.tree.2012.10.012 CrossRefPubMedGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  15. Calvo F, Lorente M, Stansly P (2012) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 142:111–119. doi: 10.1111/j.1570-7458.2012.01238.x CrossRefGoogle Scholar
  16. Carreck NL, Williams IH (2002) Food for insect pollinators on farmland: insect visits to flowers of annual seed mixtures. J Insect Conserv 6:13–23. doi: 10.1023/a:1015764925536 CrossRefGoogle Scholar
  17. Carrié RJG, George DR, Wäckers FL (2012) Selection of floral resources to optimise conservation of agriculturally-functional insect groups. J Insect Conserv 16:635–640. doi: 10.1007/s10841-012-9508-x CrossRefGoogle Scholar
  18. Carvalheiro LG, Seymour CL, Nicolson SW, Veldtman R (2012) Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J Appl Ecol 49:1373–1383. doi: 10.1111/j.1365-2664.2012.02217.x CrossRefGoogle Scholar
  19. Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29. doi: 10.1016/j.biocontrol.2011.03.007 CrossRefGoogle Scholar
  20. Chailleux A, Bearez P, Pizzol J et al (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541. doi: 10.1007/s10340-013-0498-6 CrossRefGoogle Scholar
  21. Classen A, Peters MK, Ferger SW et al (2014) Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc Biol Sci 281:20133148CrossRefPubMedPubMedCentralGoogle Scholar
  22. Colley MR, Luna JM (2000) Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: syrphidae). Environ Entomol 29:1054–1059. doi: 10.1603/0046-225X-29.5.1054 CrossRefGoogle Scholar
  23. Corbet SA, Bee J, Dasmahapatra K et al (2001) Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann Bot 87:219. doi: 10.1006/anbo.2000.1322 CrossRefGoogle Scholar
  24. Dandria D, Catania A (2009) Tuta absoluta (Povolny, 1994), an important agricultural pest in Malta. Gelechiidae, LepidopteraGoogle Scholar
  25. Desneux N, Wajnberg E, Wyckhuys KAG et al (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:1–19. doi: 10.1007/s10340-010-0321-6 CrossRefGoogle Scholar
  26. FAO (2006) Malta water resources review. Food and Agriculture Organization, RomeGoogle Scholar
  27. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefPubMedGoogle Scholar
  28. Fournier DA, Skaug HJ, Ancheta J et al (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249. doi: 10.1080/10556788.2011.597854 CrossRefGoogle Scholar
  29. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. doi: 10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  30. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  31. Greenleaf SS, Kremen C (2006) Wild bee species increase tomato production and respond differently to surrounding land use in Northern California. Biol Conserv 133:81–87. doi: 10.1016/j.biocon.2006.05.025 CrossRefGoogle Scholar
  32. Grez A, Zaviezo T, Gardiner M (2014) Local predator composition and landscape affects biological control of aphids in alfalfa fields. Biol Control 76:1–9CrossRefGoogle Scholar
  33. Haaland C, Naisbit RE, Bersier L-F (2011) Sown wildflower strips for insect conservation: a review. Insect Conserv Divers 4:60–80. doi: 10.1111/j.1752-4598.2010.00098.x CrossRefGoogle Scholar
  34. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363CrossRefGoogle Scholar
  35. Huallacháin DÓ, Anderson A, Fritch R et al (2014) Field margins: a comparison of establishment methods and effects on hymenopteran parasitoid communities. Insect Conserv Divers 7:289–307. doi: 10.1111/icad.12053 CrossRefGoogle Scholar
  36. Huang N, Enkegaard A (2011) The banker plant method in biological control. CRC Crit Rev Plant Sci 30:259–278CrossRefGoogle Scholar
  37. Ingegno BL, Pansa MG, Tavella L (2011) Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biol Control. doi: 10.1016/j.biocontrol.2011.06.003 Google Scholar
  38. Iverson AL, Marín LE, Ennis KK et al (2014) Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J Appl Ecol 51:1593–1602. doi: 10.1111/1365-2664.12334 CrossRefGoogle Scholar
  39. Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175. doi: 10.1016/j.biocontrol.2008.01.006 CrossRefGoogle Scholar
  40. Klein A-M, Vaissière BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313CrossRefPubMedGoogle Scholar
  41. Korpela E-L, Hyvönen T, Lindgren S, Kuussaari M (2013) Can pollination services, species diversity and conservation be simultaneously promoted by sown wildflower strips on farmland? Agric Ecosyst Environ 179:18–24. doi: 10.1016/j.agee.2013.07.001 CrossRefGoogle Scholar
  42. Lambion J (2011) Functional biodiversity in Southern France: a method to enhance predatory mirid bug populations. Acta Hortic 915:165–170CrossRefGoogle Scholar
  43. Lambion J (2014) Flower strips as winter shelters for predatory miridae bugs. Acta Hortic 1041:149–156CrossRefGoogle Scholar
  44. Lange WH, Bronson L (1981) Insect pests of tomatoes. Annu Rev Entomol 26:345–371. doi: 10.1146/annurev.en.26.010181.002021 CrossRefGoogle Scholar
  45. Letourneau DK, Armbrecht I, Rivera BS et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21. doi: 10.1890/09-2026.1 CrossRefPubMedGoogle Scholar
  46. Maes J, Paracchini ML, Zulian G (2011) A European assessment of the provision of ecosystem services: towards an atlas of ecosystem services. Joint Research Centre, JRC Scientific and Technical Reports No EUR 24750 EN—2011, Publications Office of the European UnionGoogle Scholar
  47. Maselou DA, Perdikis DC, Sabelis MW, Fantinou AA (2015) Plant resources as a factor altering emergent multi-predator effects. PLoS ONE 10:e0138764. doi: 10.1371/journal.pone.0138764 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mifsud D, Mangion M, Azzopardi E et al (2011) Aphids associated with shrubs, herbaceous plants and crops in the Maltese Archipelago. Bulletin of the Entomological Society of Malta 4:5–53Google Scholar
  49. Naylor RL, Ehrlich PR (1997) Natural pest control and agriculture. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, pp 151–176Google Scholar
  50. Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274. doi: 10.1007/s13593-012-0092 CrossRefGoogle Scholar
  51. Otieno M, Woodcock BA, Wilby A et al (2011) Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biol Conserv 144:2424–2431. doi: 10.1016/j.biocon.2011.06.013 CrossRefGoogle Scholar
  52. Perdikis D, Lucas E, Garantonakis N et al (2014) Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biol Control 70:35–41. doi: 10.1016/j.biocontrol.2013.12.003 CrossRefGoogle Scholar
  53. Pereira ALC, Taques TC, Valim JOS et al (2015) The management of bee communities by intercropping with flowering basil (Ocimum basilicum) enhances pollination and yield of bell pepper (Capsicum annuum). J Insect Conserv 19:479–486. doi: 10.1007/s10841-015-9768-3 CrossRefGoogle Scholar
  54. R Core Team (2015) R: a language and environment for statistical computingGoogle Scholar
  55. Rosa García R, Miñarro M (2014) Role of floral resources in the conservation of pollinator communities in cider-apple orchards. Agric Ecosyst Environ 183:118–126. doi: 10.1016/j.agee.2013.10.017 CrossRefGoogle Scholar
  56. Saliba L (1963) Insect pests of crop plants in the Maltese Islands. Department of Agriculture, MaltaGoogle Scholar
  57. Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498. doi: 10.1016/j.biocontrol.2009.09.006 CrossRefGoogle Scholar
  58. Sanchez JA, La-Spina M, Lacasa A (2014) Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. Eur J Entomol 111:1–9. doi: 10.14411/eje.2014.041 CrossRefGoogle Scholar
  59. Scheper J, Holzschuh A, Kuussaari M et al (2013) Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis. Ecol Lett 16:912–920. doi: 10.1111/ele.12128 CrossRefPubMedGoogle Scholar
  60. Shackelford G, Steward PR, Benton TG et al (2013) Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev Camb Philos Soc 88:1002–1021CrossRefPubMedGoogle Scholar
  61. Skaug H, Fournier D, Nielsen A, et al. (2013) Generalized linear mixed models using AD Model Builder. R package version 0.7.3Google Scholar
  62. Storkey J, Döring T, Baddeley J et al (2015) Engineering a plant community to deliver multiple ecosystem services. Ecol Appl 25:1034–1043CrossRefPubMedGoogle Scholar
  63. Thomas CFG, Marshall EJP (1999) Arthropod abundance and diversity in differently vegetated margins of arable fields. Agric Ecosyst Environ 72:131–144. doi: 10.1016/S0167-8809(98)00169-8 CrossRefGoogle Scholar
  64. Urbaneja A, Tapia G, Stansly P (2005) Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae). Biocontrol Sci Technol 15:513–518. doi: 10.1080/09583150500088777 CrossRefGoogle Scholar
  65. Wäckers FL, van Rijn PCJ (2005) Food for protection: an introduction. In: van Rijn PCJ, Wäckers FL, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 1–14CrossRefGoogle Scholar
  66. Wratten SD, Gillespie M, Decourtye A et al (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122. doi: 10.1016/j.agee.2012.06.020 CrossRefGoogle Scholar
  67. Zappala L, Biondi A, Alma A, Al-Jboory I (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci. doi: 10.1007/s10340-013-0531-9 Google Scholar
  68. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Statistics for biology and health. Springer-Verlag, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratory of Terrestrial Ecology, Institute of Applied SciencesMalta College of Arts, Science and TechnologyPaolaMalta

Personalised recommendations