Arthropod-Plant Interactions

, Volume 11, Issue 6, pp 861–870 | Cite as

Characterization of resistance to the bean weevil Acanthoscelides obtectus Say, 1831 (Coleoptera: Bruchidae) in common bean genotypes

  • Edson L. L. Baldin
  • Fernando M. Lara
  • Roberto S. Camargo
  • Luiz E. R. Pannuti
Original Paper

Abstract

The bean weevil Acanthoscelides obtectus (Say, 1831) (Coleoptera: Bruchidae) is one of the most serious pests of stored beans worldwide because of the damage it causes to grains within warehouses. The use of resistant genotypes may offer a control strategy for this pest. In the current study, we screened common bean genotypes of Andean American and Mesoamerican origin in laboratory and greenhouse bioassays to select the most promising beans for resistance to the bean weevil. In the laboratory, we evaluated number of eggs, period of development (egg-adult), number of emerged adults, dry weight of adults, and weight of consumed grains. In the greenhouse, number of pods per plant and number of grains per pod were evaluated. We also assessed the percentages of damaged pods per plant and damaged grains per pod. Combining the results obtained in the laboratory and greenhouse assays, the common bean genotypes Arc.1, Arc.2, Arc.1S, Arc.5S, and Arc.3S were identified as resistance expressing antibiosis against A. obtectus. The lowest percentages of damaged pods were found in the Arc.1 and Arc.1S genotypes, and their resistance to damage was apparently morphological (antixenotic) because they possessed structures that prevented contact between larvae and grains. The use of resistant genotypes in combination with other techniques may improve management of the weevil. Additionally, the resistant genotypes identified here can be used in breeding programs to develop common bean lines with resistance to A. obtectus.

Keywords

Plant resistance Phaseolus vulgaris Stored bean Greenhouse Weevil 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amorim TML, Macedo LLP, Uchoa AF, Oliveira AS, Pitanga JCM, Macedo FP, Santos EA, Sales MP (2008) Proteolytic digestive enzymes and peritrophic membranes during the development of Plodia interpunctella (Lepidoptera: Piralidae): targets for the action of soybean trypsin inhibitor (SBTI) and chitin-binding vicilin (EvV). J Agric Food Chem 56:7738–7745CrossRefPubMedGoogle Scholar
  2. Apostolova E, Palagacheva N, Svetleva D, Mateeva A (2013) Investigations on the resistance of the some Bulgarian common bean genotypes towards bean weevil (Acanthoscelides obtectus Say). J Cent Eur Agric 14:1530–1540CrossRefGoogle Scholar
  3. Baker BP, Benbrook CM, Groth E, Lutz BK (2002) Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets. Food Addit Contam 19:427–446CrossRefPubMedGoogle Scholar
  4. Baldin ELL, Lara FM (2004) Effect of storage temperature and bean genotypes on the resistance to Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Neotrop Entomol 33:365–369CrossRefGoogle Scholar
  5. Baldin ELL, Lara FM (2008) Resistance of stored bean varieties to Acanthoscelides obtectus (Coleoptera: Bruchidae). Insect Sci 15:317–326CrossRefGoogle Scholar
  6. Barbosa FR, Yokoyama M, Pereira PAA, Zimmermann FJP (1999) Effect of arcelin protein on the biology of Zabrotes subfasciatus (Boheman 1833) in dry beans. Pesqui Agropecu Bras 34:1805–1810CrossRefGoogle Scholar
  7. Barbosa FR, Yokoyama M, Pereira PAA, Zimmermann FJP (2000) Damage of Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae) on common beans (Phaseolus vulgaris L.) lines containing arcelin. An Soc Entomol Bras 29:113–121CrossRefGoogle Scholar
  8. Birch ANE, Simmonds MSJ, Blaney WM (1989) Chemical interactions between bruchids and legumes. Mongr Syst Bot Missouri Bot Gard 29:781–809Google Scholar
  9. Blair MW, Muñoz C, Buendía HF, Flower J, Bueno JM, Cardona C (2010) Genetic mapping of micro satellites markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121:393–402CrossRefPubMedPubMedCentralGoogle Scholar
  10. Broughton WJ, Hernández G, Blair M, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)—model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  11. Cardona C, Posso CE, Kornegay J, Valor J, Serrano M (1989) Antibiosis effects of wild dry bean accessions on the mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). J Econ Entomol 82:310–315CrossRefGoogle Scholar
  12. Cardona C, Kornegay J, Posso CE, Morales F, Ramirez H (1990) Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56:197–206CrossRefGoogle Scholar
  13. Carlini CR, Grossi de Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539CrossRefPubMedGoogle Scholar
  14. Chrispeels MJ, Raikhel NV (1991) Lectins, lectins genes and their role in plant defense. Plant Cell 3:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clement SL, Mcphee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breed 128:478–485CrossRefGoogle Scholar
  16. Coelho SRM, Prudencio SH, Christ D, Sampaio SC (2011) Storage-induced changes in protein interactions and protein solubility in common beans. J Food Agric Environ 9:44–48Google Scholar
  17. Dobie P, Dendy J, Sherman C, Padgham J, Wood A, Gatehouse AMR (1990) New sources of resistance to Acanthoscelides obtectus (Say) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae) in nature seeds of five species of Phaseolus. J Stored Prod Res 26:177–186CrossRefGoogle Scholar
  18. Fatunla T, Badaru K (1983) Resistance of cowpea pods to Callosobruchus maculatus Fabr. J Agric Sci 100:205–209CrossRefGoogle Scholar
  19. Fery RL, Cuthbert FP Jr (1979) Measurement of pod-wall resistance to the cowpea curculio in the southernpea (Vigna unguiculata (L.) Walp.). Hort Sci 14:29–30Google Scholar
  20. Franco OC, Melo FR, Silva MCM, Grossi de Sá MF (1999) Resistência de plantas a insetos: inibidores de enzimas digestivas e a obtenção de plantas resistentes. Biotecnologia Cienc Desenvolv 2:36–40Google Scholar
  21. Gatehouse AMR, Dobie P, Hodges RJ, Meik J, Pusztai A, Boulter D (1987) Role of carbohydrates in insect resistance in Phaseolus vulgaris. J Insect Physiol 33:843–850CrossRefGoogle Scholar
  22. Gepts P (1999) Development of an integrated genetic linkage map in common bean (Phaseolus vulgaris L.) and its use. In: Singh S (ed) Bean breeding for the 21st century. Kluwer, Dordrecht, pp 53–91Google Scholar
  23. Grossi de Sá MF, Chrispeels MJ (1997) Molecular cloning of bruchid (Zabrotes subfasciatus) α-amylase cDNA and interactions of the expressed enzyme with bean amylase inhibitors. Insect Biochem Mol Biol 27:271–281CrossRefPubMedGoogle Scholar
  24. Gusmão NMS, Oliveira JV, Navarro DM, Dutra KA, Silva WA, Wanderley MJA (2013) Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (Fabr.) (Coleoptera: Chrysomelidae, Bruchinae). J Stored Prod Res 54:41–47CrossRefGoogle Scholar
  25. Herget T, Schell J, Schreier PH (1990) Elicitor-specific induction of one member of the chitinase gene family in Arachis hypogaea. Mol Gen Genet 224:469–476CrossRefPubMedGoogle Scholar
  26. Howe RW, Currie JE (1964) Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bull Entomol Res 55:437–477CrossRefGoogle Scholar
  27. Ishimoto M, Chrispeels MJ (1996) Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean. Plant Physiol 111:393–401CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jackai LEN, Nokoe S, Tayo BO, Koona P (2001) Influences on pod wall and seed defenses against the brown cowpea coreid bug, Clavigralla tomentosicollis Stal. (Hem., Coreidae), in wild and cultivated Vigna species. J Appl Entomol 125:277–286CrossRefGoogle Scholar
  29. Kasahara K, Hayashi K, Arakawa T, Philo JS, Wen J, Hara S, Yamagushi H (1996) Complete sequence, subunit structure, and complexes with pancreatic α-amylase of an α-amylase inhibitor from Phaseolus vulgaris white kidney beans. J Biochem 120:177–183CrossRefPubMedGoogle Scholar
  30. Kemabonta K, Odebiyi A (2005) Susceptibility of the life stages of Callosobruchus maculatus (Coleoptera: Bruchidae) to diflubenzuron in cowpea seeds. J Plant Dis Prot 112:193–199Google Scholar
  31. Kogan M (1975) Plant resistance in pest management. In: Metcalf RL, Luckmann WH (eds) Introduction to insect pest management. Wiley, New York, pp 103–146Google Scholar
  32. Kuroda M, Ishimoto M, Suzuki K, Kondo H, Abe K, Kitamura K, Arai S (1996) Oryzacystatins exhibit growth inhibitory and lethal effects on different species of bean insect pests Callosobruchus chinensis (Coleoptera) and Riptortus clavatus (Hemiptera). Biosci Biotechnol Biochem 60:209–212CrossRefPubMedGoogle Scholar
  33. Lara FM (1997) Resistance of wild and near isogenic bean lines with arcelin variants to Zabrotes subfasciatus (Boheman). I. Winter crop. An Soc Entomol Bras 26:551–560CrossRefGoogle Scholar
  34. Lara FM (1998) Resistance to Zabrotes subfasciatus (Boheman) in bean genotypes containing arcelin. III. Dry season. Cult Agron 7:25–40Google Scholar
  35. Lorini I (1998) Controle integrado de pragas de grãos armazenados. Embrapa, Passo FundoGoogle Scholar
  36. Macedo MLR, Andrade LBS, Moraes RA, Xavier- Filho J (1993) Vicilin variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus). Comp Biochem Physiol 105C:89–94Google Scholar
  37. Mazzoneto F, Boiça Júnior AL (1999) Determination of the types of resistance of bean genotypes to the attack of Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae). An Soc Entomol Bras 28:307–311CrossRefGoogle Scholar
  38. Mazzoneto F, Vendramim JD (2002) Biological aspects of Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae) on bean genotypes with and without arcelin. Neotrop Entomol 31:435–439CrossRefGoogle Scholar
  39. Messina FJ (1984) Influence of cowpea pod maturity on the oviposition choices and larval survival of a bruchid beetle Callosobruchus maculatus. Entomol Exp Appl 35:241–248CrossRefGoogle Scholar
  40. Minney BHP, Gatehouse AMR, Dobie P, Dendy CC, Gatehouse JA (1990) Biochemical bases of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean); a mechanism for arcelin toxicity. J Insect Physiol 36:757–767CrossRefGoogle Scholar
  41. Murdock LL, Shade RE, Pomeroy MA (1988) Effects of E-64, a cysteine proteinase-inhibitor, on cowpea weevil growth, development, and fecundity. Environ Entomol 17:467–469CrossRefGoogle Scholar
  42. Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71:847–855CrossRefPubMedGoogle Scholar
  43. Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210CrossRefGoogle Scholar
  44. Painter RH (1951) Insect resistance in crop plants. McMillan, New YorkGoogle Scholar
  45. Panda N, Khush GS (1995) Host plant resistance to insects. CAB International, OxonGoogle Scholar
  46. Romero Andreas J, Yandell BS, Bliss FA (1986) Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128CrossRefPubMedGoogle Scholar
  47. Sakthivelkumar S, Jesse MI, Veeramani V, Ramaraj P, Kathiravan K, Arumugama M, Janarthanana S (2013) Diversity and analysis of sequences encoded by arcelin genes from Indian wild pulses resistant to bruchids. Process Biochem 48:1697–1705CrossRefGoogle Scholar
  48. Sales MP, Gerhardt IR, Grossi de Sá MF, Xavier-Filho J (2000) Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiol 124:515–522CrossRefPubMedPubMedCentralGoogle Scholar
  49. SAS Institute (2002) SAS/STAT user’s guide, version 8.1. SAS Institute, CaryGoogle Scholar
  50. Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of Phaseolus. A Review. Part 1. Chemical composition: proteins. Crit Rev Food Sci Nutr 20:1–46CrossRefPubMedGoogle Scholar
  51. Schmale I, Wackers FL, Cardona C, Dorn S (2002) Field infestation of Phaseolus vulgaris by Acanthoscelides obtectus (Coleoptera: Bruchidae), parasitoid abundance, and consequences for storage pest control. Environ Entomol 31:859–863CrossRefGoogle Scholar
  52. Schoonhoven AV, Cardona C (1982) Low levels of resistance to the Mexican bean weevil in dry beans. J Econ Entomol 75:567–569CrossRefGoogle Scholar
  53. Schoonhoven AV, Cardona C (1986) Main insect pests of stored beans and their control. CIAT, CaliGoogle Scholar
  54. Shade RE, Pratt RC, Pomeroy MA (1987) Development and mortality of the bean weevil, Acanthoscelides obtectus (Coleoptera: Bruchidae), on mature seeds of tepary beans, Phaseolus acutifolius, and common beans, Phaseolus vulgaris. Environ Entomol 16:1067–1070CrossRefGoogle Scholar
  55. Smith CM (2005) Plant resistance to arthropods. Springer Science & Business, DordrechtCrossRefGoogle Scholar
  56. Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328CrossRefPubMedGoogle Scholar
  57. Taylor TA (1981) Distribution, ecology and importance of bruchids attacking grain legumes in Africa. In: Labeyrie V (ed) The ecology of bruchids attacking legumes (pulses). Springer Science & Business Media, Dordrecht, pp 199–203CrossRefGoogle Scholar
  58. Velten G, Rott AS, Cardona C, Dorn S (2007) The inhibitory effect of the natural seed storage protein arcelin on the development of Acanthoscelides obtectus. J Stored Prod Res 43:550–557CrossRefGoogle Scholar
  59. Walter A (1992) Un frijol silvestre protege los cultivos sin praguicidas. CIAT Int 11:3–4Google Scholar
  60. Wanderley VS, Oliveira JV, Andrade MLA Jr (1997) Resistance of cultivars and lines of bean, Phaseolus vulgaris L., to Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae). An Soc Entomol Bras 26:315–320CrossRefGoogle Scholar
  61. Weber E (2001) Armazenagem agrícola. Livraria e Editora Agropecuária, GuaíbaGoogle Scholar
  62. Wightman JA, Southgate BJ (1982) Egg morphology, host, and probable regions of origin of the bruchids (Coleoptera: Bruchidae) that infest stored pulses—an identification aid. N Z J Exp Agric 10:95–99Google Scholar
  63. Wong-Corral FJ, Castañé C, Riudavets J (2013) Lethal effects of CO2-modified atmospheres for the control of three Bruchidae species. J Stored Prod Res 55:62–67CrossRefGoogle Scholar
  64. Zaugg I, Magni C, Panzeri D, Daminati M, Bollini R, Benrey B, Bacher S, Sparvoli F (2013) QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet 126:647–661CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Edson L. L. Baldin
    • 1
  • Fernando M. Lara
    • 2
  • Roberto S. Camargo
    • 1
  • Luiz E. R. Pannuti
    • 1
  1. 1.Department of Crop Protection, College of Agronomic SciencesSão Paulo State UniversityBotucatuBrazil
  2. 2.Department of Plant Protection, College of Agronomic and Veterinary SciencesSão Paulo State UniversityJaboticabalBrazil

Personalised recommendations