Skip to main content

Native arthropods on exotic sand dune flowers: consideration of sample size and number for investigating rare species and sparse communities

Abstract

When studying arthropod visitors of flowers, the sampling unit (individual flowers, groups of flowers, areas of plants, timed visits, etc.) depends upon the aim of the study and the sampling method employed. In this study, arthropods using flowers of the ice plant, Carpobrotus edulis, were recorded on the sand dunes at New Brighton in the south island of New Zealand. Of 3600 flowers, only 10% contained invertebrates and only 478 specimens were recorded in total. Of 32 arthropod species observed on this exotic plant, we consider at least 20 to be native to New Zealand and five species are probably New Zealand endemics. Based on an occupation rate of individual flowers of 10%, a binomial model indicated that a sample of 100 flowers would have <0.003% chance of containing no specimens, and 96% chance that 5–16 flowers would contain some animals. Species accumulation models (e.g. bootstrap, Chao and rarefaction) and models examining the likelihood of recording rare species indicated that after examining 2000 flowers, 80% of arthropod species would be recorded, and that only the rarest species in our study would fall below an 80% statistical power of detection. The results suggest that for this flower–invertebrate system, a scheme that involved 20 independent samples, each consisting of 100 flowers, would provide a good chance of (1) avoiding totally empty samples (2) collecting a high proportion of the total species present and (3) recording all but the very rarest species that occur in this system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Albrecht M, Schmid B, Hautier Y, Muller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proc R Soc B 279:4845–4852

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Santana-Garcon J (2014) Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol Lett 8:66–73

    Google Scholar 

  • Au L (2000) Carpobrotus edulis in coastal california plant communities. Restor Reclam Rev 6:1–7

    Google Scholar 

  • Bartomeus I, Vilà M, Santamaría L (2008) Contrasting effects of invasive plants in plant–pollinator networks. Oecologia 155:761–770

    Article  PubMed  Google Scholar 

  • Bezemer TM, Harvey JA, Cronin JT (2014) The response of native insect communities to invasive plants. Ann Rev Entomol 59:119–141

    Article  CAS  Google Scholar 

  • Cao Y, Dudley-Williams D, Larsen DP (2002) Comparison of ecological communities: the problem of sample representativeness. Ecol Monogr 72:41–56

    Article  Google Scholar 

  • Cardoso P (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodivers Conserv 18:3949

    Article  Google Scholar 

  • Chacoff NP, Vazquez DP, Lomascolo SB, Stevani EL, Dorado J, Padro B (2012) Evaluating sampling completeness in a desert plant–pollinator network. J Anim Ecol 81:190–200

    Article  PubMed  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Chao A, Colwell RK, Lin C-W, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133

    Article  PubMed  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chinnock RJ (1972) Natural hybrids between Disphyma and Carpobrotus (Aizoaceae) in New Zealand. N Z J Bot 10:615–625

    Article  Google Scholar 

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc B 345:101–118

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Chang XM, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 98:2717–2727

    Article  Google Scholar 

  • Cunningham RB, Lindenmayer DB (2005) Modelling count data of rare species: some statistical issues. Ecology 86:1135–1142

    Article  Google Scholar 

  • Delipetrou P (2006) Carpobrotus edulis. DAISIE. www.europe-aliens.org/pdf/Carpobrotus_edulis.pdf. Accessed 2 Feb 2017

  • Essenberg CJ (2012) Explaining variation in the effect of floral density on pollinator visitation. Am Nat 180:153–166

    Article  PubMed  Google Scholar 

  • Falcao JCF, Dattilo W, Rico-Gray V (2016) Sampling effort differences can lead to biased conclusions on the architecture of ant–plant interaction networks. Ecol Complex 25(2016):44–52

    Article  Google Scholar 

  • Forster RR (1979) The spiders of New Zealand. Part V. Cycloctenidae, Gnaphosidae, Clubionidae. Otago Mus Bul 5:8–95

    Google Scholar 

  • Garbuzov M, Ratnieks FLW (2014) Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct Ecol 28:364–374

    Article  Google Scholar 

  • Gerber E, Krebs C, Murrell C, Morietti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141:646–654

    Article  Google Scholar 

  • Green RH, Young RC (1993) Sampling to detect rare species. Ecol Appl 3:351–356

    Article  PubMed  Google Scholar 

  • Harder LD, Jordan CY, Gross WE, Routley MB (2004) Beyond floricentrism: the pollination function of inflorescences. Plant Species Biol 19:137–148

    Article  Google Scholar 

  • Henderson P, Seaby R (2008) A practical handbook for multivariate methods. Pisces Conservation Ltd., Lymington

    Google Scholar 

  • Hodge S, Vink CJ (2016) Evidence of absence is not proof of absence: the case of the New Brighton katipō. N Z J Zool. doi:10.1080/03014223.2016.1227343

    Google Scholar 

  • Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc B 275:2283–2291

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456

    Article  Google Scholar 

  • Kenkel NC, Juhasz-Nagy IP, Podani J (1989) On sampling procedures in population and community ecology. Vegetatio 83:195–207

    Article  Google Scholar 

  • Leather SR, Basset Y, Didham RK (2014) How to avoid the top ten pitfalls in insect conservation and diversity research and minimise your chances of manuscript rejection. Insect Conserv Divers 7:1–3

    Article  Google Scholar 

  • MacDonald KJ, Lennon ZJ, Bensemann LL, Clemens J, Kelly D (2015) Variable pollinator dependence of three Gastrodia species (Orchidaceae) in modified Canterbury landscapes. N Z J Ecol 39:208–213

    Google Scholar 

  • Macfarlane RP (2005) New brighton sand dune invertebrates. A report prepared for Christchurch City Council. Christchurch

  • MacKenzie D (2005) What are the issues with presence-absence data for wildlife managers? J Wildl Manag 69:849–860

    Article  Google Scholar 

  • Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    Article  CAS  PubMed  Google Scholar 

  • Mawdsley JR (2003) The importance of species of Dasytinae (Coleoptera: Melyridae) as pollinators in Western North America. Coleopt Bull 57:154–160

    Article  Google Scholar 

  • McBride GB, Johnstone P (2011) Calculating the probability of absence using the credible interval value. N Z J Ecol 35:189–190

    Google Scholar 

  • Millidge AF (1988) The spiders of New Zealand. Part VI. Linyphiidae. Otago Mus Bull 6:35–67

    Google Scholar 

  • Moragues E, Traveset A (2005) Effect of Carpobrotus spp. on the pollination success of native plant species of the Balearic Islands. Biol Conserv 122:611–619

    Article  Google Scholar 

  • Neinhuis CM, Dietzsch AC, Stout CJ (2009) The impacts of an invasive alien plant and its removal on native bees. Apidologie 40:450–463

    Article  Google Scholar 

  • Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572

    Article  Google Scholar 

  • Prasad AV, Hodge S (2013a) The diversity of arthropods associated with the exotic creeping daisy Sphagneticola trilobata in Suva, Fiji Islands. Entomol Mon Mag 149:155–161

    Google Scholar 

  • Prasad AV, Hodge S (2013b) Factors influencing the foraging activity of the allodapine bee Braunsapis puangensis on creeping daisy (Sphagneticola trilobata) in Fiji. J Hymenopt Res 35:59–69

    Article  Google Scholar 

  • Primack RB (1978) Variability in New Zealand montane and alpine pollinator assemblages. N Z J Ecol 1:66–73

    Google Scholar 

  • Queheillalt DM, Cain JW III, Taylor DE, Morrison ML, Hoover SL, Tuatoo-Bartley N, Rugge L, Christopherson K, Hulst MD, Harris MR, Keough HL (2002) The exclusion of rare species from community-level analyses. Wildl Soc Bull 30:756–759

    Google Scholar 

  • Regan TJ, McCarthy MA, Baxter PWJ, Panetta FD, Possingham HP (2006) Optimal eradication: when to stop looking for an invasive plant. Ecol Lett 9:759–766

    Article  PubMed  Google Scholar 

  • Rivera-Hutinel A, Bustamante RO, Marin VH, Medel R (2012) Effects of sampling completeness on the structure of plant–pollinator networks. Ecology 93:1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Royale JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554

    Article  Google Scholar 

  • Samways MJ, McGeoch MA, New TR (2010) Insect conservation. OUP, New York

    Google Scholar 

  • Showler K (1989) The Himalayan balsam in Britain—an undervalued source of nectar. Bee World 70:130–131

    Google Scholar 

  • Stary P, Tkalcu B (1998) Bumble-bees (Hym. Bombidae) associated with the expansive touch-me-not, Impatiens glandulifera in wetland biocorridors. Anz Schadlingskunde Pflanzenschutz Umweltschutz 71:85–87

    Article  Google Scholar 

  • Stouffer DB, Cirtwill AR, Bascompte J (2014) How exotic plants integrate into pollination networks. J Ecol 102:1442–1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Suehs CM, Medail F, Affre L (2004) Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. genetic diversity and introgression. Heredity 92:31–40

    Article  CAS  PubMed  Google Scholar 

  • Sunny A, Diwaka S, Sharma GP (2015) Native insects and invasive plants encounters. Arthropod-Plant Interact 9:323–331

    Article  Google Scholar 

  • Tikoca S, Hodge S, Tuiwawa M, Pene S, Clayton J, Brodie S (2016) An appraisal of sampling method and effort for investigating moth assemblages in a Fijian forest. Aust Entomol 55:455–462

    Article  Google Scholar 

  • Topp W, Kappes H, Rogers F (2008) Response of ground-dwelling beetle (Coleoptera) assemblages to giant hogweed (Reynoutria spp.) invasion. Biol Invasions 10:381–390

    Article  Google Scholar 

  • Vila M, Bartomeus I, Dietzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant–pollinator networks across Europe. Proc R Soc B 276:3887–3893

    Article  PubMed  PubMed Central  Google Scholar 

  • Vink CJ, Sirvid PJ (1998) The Oxyopidae (lynx spiders) of New Zealand. N Z Entomol 21:1–9

    Article  Google Scholar 

  • Westphal C, Bommarco R, Carré G et al (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jason Roberts and Antony Shadbolt of Christchurch City Council, for permission to carry out the survey at New Brighton and providing a copy of the report by Rod MacFarlane, respectively. John Early of Auckland Museum provided identifications of the parasitoid Hymenoptera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hodge.

Additional information

Handling Editor: Stanislav Gorb.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodge, S., Curtis, N., Vink, C.J. et al. Native arthropods on exotic sand dune flowers: consideration of sample size and number for investigating rare species and sparse communities. Arthropod-Plant Interactions 11, 691–701 (2017). https://doi.org/10.1007/s11829-017-9521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9521-9

Keywords