Skip to main content
Log in

Physical and biochemical aspects of host plant resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) in rapeseed-mustard

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Mustard aphid, Lipaphis erysimi (Kaltenbach) is a major constraint in increasing the yield of rapeseed-mustard crops in India. Resistance to mustard aphid infestation and its correlation to some physiological and biochemical traits in selected varieties of different Brassica species were studied. Yield and oil content losses of up to 29.4% and 2.84%, respectively, were observed due to aphid infestation. Eruca sativa var. T-27 and Brassica carinata var. DLSC-2 were less susceptible to aphid infestation and had minimal yield losses. Surface wax, total glucosinolate, and phenol contents were found to correlate negatively with the aphid infestation, whereas the opposite relationship was obtained for the sugar content. The study suggests that physical and chemical barriers potentially play an important role in resistance against aphid infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arunachalam V, Katiyar RK (1990) Genetics and Breeding. In: Chopra VL, Parkash S (eds) Oil seed Brassicas in Indian agriculture. Vikas Publishing House, New Delhi, pp 86–116

    Google Scholar 

  • Bakhetia DRC (1990) Insect pests’. In: Chopra VL, Parkash S (eds) Oil seed Brassicas in Indian agriculture. Vikas Publishing House, New Delhi, pp 211–240

    Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617

    Article  CAS  Google Scholar 

  • Bjorkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Molmann J, Seljasen R, Smart LE, Stewart D (2011) Phytochemicals of Brassicaceae in plant protection and human health—influences of climate, environment and agronomic practice. Phytochem 72: 538–556

    Article  Google Scholar 

  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B. (2008) Responses of Brassica oleracea cultivars to infestation by the aphid Brevicoryne brassicae: an ecological and molecular approach. Plant Cell Environ 31: 1592–1605

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Buskov S, Serra B, Rosa E, Sorensen H, Sorensen JC (2002) Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis Cv. Woll). J Agric Food Chem 50:690–695

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay C, Agrawal R, Kumar A, Singh YP, Roy SK, Khan SA, Bhar LM, Chakravarthy NVK, Srivastava A, Patel BS, Srivastava B, SinghCP, Mehta SC (2005) Forecasting of Lipaphis erysimi on oilseed Brassicas in India—a case study. Crop Prot 24:1042–1053

    Article  Google Scholar 

  • Ciepiela A (1989) Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol Exp Appl 51: 269–275

    Article  CAS  Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85: 121–133

    Article  CAS  Google Scholar 

  • Dhillon SS, Kumar PR, Gupta N (1992) Breeding Objectives and Methodologies. In: Chopra VL, Vikas S (eds) Oil seed Brassicas in Indian agriculture. Vikas Publishing House, New Delhi, pp 8–20

    Google Scholar 

  • Ebercon A, Blum A, Jordan WR (1977) A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci 17:179–180

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  • Havlickova H, Cvikrova M, Eder J (1996) Phenolic acids in wheat cultivars in relation to plant suitability for and response to cereal aphids. Zeitsch für Pflanzenkran und Pflanzen 103: 535–542

    CAS  Google Scholar 

  • Havlickova H, Cvikrova M, Eder J, Hrubcova M (1998) Alterations on the levels of phenolics and peroxidases activities induced by Rhopalosiphum padi (L.) in two winter wheat cultivars. Zeitsch für Pflanzenkran und Pflanzen 105: 140–148

    CAS  Google Scholar 

  • Hopkins WG, Huner NPA (2004) Introduction to plant physiology. Wiley, New York, pp 479–481

  • Joseph S, Peter KV (2007) Non preference mechanism of aphid (Aphis craccivora Koch) resistance in cowpea. Legum Res 30(2): 79–85

    Google Scholar 

  • Khattab H (2007) The defense mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Aust J Basic Appl Sci 1(1): 56–62

    CAS  Google Scholar 

  • Kirkegaard JA, Sarwar M (1998) Biofumigation potential of brassicas. I. Variation in glucosinolate profiles of diverse field-grown brassicas. Plant Soil 201: 71–89

    Article  CAS  Google Scholar 

  • Kumar S, Singh AK, Kumar M, Yadav SK, Chauhan JS, Kumar PR (2003) Standardization of Near Infrared Reflectance Spectroscopy (NIRS) for determination of seed oil, moisture and protein content in rapeseed-mustard. J Food Sci Technol 40(3):306–309

    Google Scholar 

  • Kumar S, Yadav SK, Chauhan JS, Singh AK, Khan NA, Kumar PR (2004) Total glucosinolate estimation by complex formation between glucosinolate and tetrachloropalladate (II) using ELISA reader. J Food Sci Technol 41(1):63–65

    Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    Article  PubMed  Google Scholar 

  • Mandal SMA, Mishra RK, Patra A (1994) Yield loss in rapeseed and mustard due to aphid infestation in respect of different cultivars and dates of sowing. Orissa J Agric Res 7: 58–62

    Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138: 1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles PW (1989) The responses of plant to the feeding of Aphidoidea: principles. In: Minks AK, Harrewijn P (eds) World Crop Pests. Elsevier, New York, p 63

    Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125: 1074–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller R, de Vos M, Sun JY, Sonerby IE, Halkier BA, Wittstock U, Jander G (2010) Differential effects of indole and aliphatic glucosinolates on Lepidopteran herbivores. J Chem Ecol 36:905–913

    Article  PubMed  Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5: 505–511

    Article  PubMed  Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2005) Identification of expression profiles of sorghum genes in response to greenbug phloemfeeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  PubMed  Google Scholar 

  • Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt C, Pope TW, Powel G, Rossiter JT (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicaceae as a defense against two coccinellid species. J Chem Ecol 34:323–329

    Article  CAS  PubMed  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bumb. Proc Natl Acad Sci USA 99:11223–11228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutledge CE, Eigenbrode SD (2003) Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces their attachment to leaf surfaces. Can Entomol 135:93–101

    Article  Google Scholar 

  • Sadasivam S, Manickam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Ltd, New Delhi, pp 11–12

    Google Scholar 

  • Santolamazza-Carbone S, Velasco P, Soengas P, Cartea ME (2013) Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala. Oecologia doi:10.1007/s00442-013-2817-2

    PubMed  Google Scholar 

  • Singh P, Sinhal VK (2011) Effect of aphid infestation on the biochemical constituents of mustard (Brassica juncea) plant. J Phytol 3(8):28–33

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299: 152–178

    Article  CAS  Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122(1): 1–16

    Article  CAS  Google Scholar 

  • Walling LL (2008) Avoiding effective defences: strategies employed by phloem-feeding insects. Plant Physiol 146: 859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will T, Tjallingii WF, Thonnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Nat Acad Sci USA 104: 10536–10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Tsao R, Chiba M, Potter J (2005) Selective nematicidal activity of allyl isothiocyanate. J Food Agric Environ 3:218–221

    CAS  Google Scholar 

  • Znidarcic D, Valic N, Trdan S (2008) Epicuticular wax content in the leaves of cabbage (Brassica oleracea L.var. capitata) as a mechanical barrier against three insect pests. Acta Agric Slov 91(2): 361–370

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help and support provided by the Director, ICAR-Directorate of Rapeseed-Mustard Research, Sewar, Bharatpur during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Additional information

Communicated by Rupesh Kariyat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, Y.P., Singh, S.P. et al. Physical and biochemical aspects of host plant resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) in rapeseed-mustard. Arthropod-Plant Interactions 11, 551–559 (2017). https://doi.org/10.1007/s11829-016-9492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9492-2

Keywords

Navigation