Advertisement

Arthropod-Plant Interactions

, Volume 10, Issue 6, pp 545–555 | Cite as

Vegetation heterogeneity caused by an ecosystem engineer drives oviposition-site selection of a threatened grassland insect

  • Merle Streitberger
  • Thomas Fartmann
Original Paper

Abstract

Soil-disturbing ecosystem engineers play an important role in plant-species diversity in grasslands as they increase vegetation heterogeneity by creating gaps due to burrowing or mound-building activities. However, knowledge of the ecological importance of these microsites for arthropods is still rare. In this study, we analyse the role of ant-nest mounds of the yellow meadow ant (Lasius flavus) for oviposition-site selection of the silver-spotted skipper (Hesperia comma). Ant mounds were searched for H. comma eggs. Microclimatic and vegetation parameters were ascertained at occupied sites and control sites within the matrix vegetation. Furthermore, we analysed the habitat requirements of L. flavus by means of nest counting and the sampling of environmental parameters within different sites. L. flavus occurred most frequently in abandoned and less steep sites with deeper soils. Mean egg occupancy rates of H. comma on ant hills were 32 %, nearly twice as high as at control sites (18 %). In contrast to the surrounding vegetation, nest mounds were characterized by a lower vegetation cover and litter and a higher proportion of bare ground. Furthermore, they had a higher cover of host plants compared with control samples. These microhabitats offered the following essential key factors for the larval development of H. comma: (1) a suitable microclimate due to open vegetation and (2) a high amount of host plants. This study highlights the importance of L. flavus as an ecosystem engineer within central European grasslands because this species increases vegetation heterogeneity.

Keywords

Calcareous grassland Disturbance Egg-laying Hesperia comma Lasius flavus Microhabitat preference 

Notes

Acknowledgments

We are very grateful to the Akademie für ökologische Landeserforschung e.V. for partly funding this study. Moreover, we like to thank an anonymous reviewer for valuable comments on an earlier version of the manuscript.

Funding

The study was partly supported by the Akademie für ökologische Landeserforschung e.V.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbas F, Picot D, Merlet J, Cargnelutti B, Lourtet B, Angibault J-M, Daufresne T, Aulagnier S, Verheyden H (2012) A typical browser, the roe deer, may consume substantial quantities of grasses in open landscapes. Eur J Wildl Res 59:69–75. doi: 10.1007/s10344-012-0648-9 CrossRefGoogle Scholar
  2. Augustine DJ, Baker BW (2013) Associations of grassland bird communities with black-tailed prairie dogs in the North American great plains. Conserv Biol 27:324–334. doi: 10.1111/cobi.12013 CrossRefPubMedGoogle Scholar
  3. Blomqvist MM, Olff H, Blaauw MB, Bongers T, van der Putten W-H (2000) Interactions between above-and belowground biota:importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90:582–598CrossRefGoogle Scholar
  4. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi: 10.1046/j.1365-2745.1998.8650717.x CrossRefGoogle Scholar
  5. Börschig C, Klein AM, von Wehrden H, Krauss J (2013) Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Bas Appl Ecol 14:547–554. doi: 10.1016/j.baae.2013.09.002 CrossRefGoogle Scholar
  6. Cousins S (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758. doi: 10.1016/j.biocon.2009.07.001 CrossRefGoogle Scholar
  7. Cousins SAO, Eriksson O (2008) After the hotspots are gone. Land use history and grassland plant species diversity in a strongly transformed agricultural landscape. Appl Veg Sci 11:365–374. doi: 10.3170/2008-7-18480 CrossRefGoogle Scholar
  8. Critchley CNR, Burke MJW, Stevens DP (2003) Conservation of lowland semi-natural grasslands in the UK: a review of botanical monitoring results from agri-environment schemes. Biol Conserv 115:263–278. doi: 10.1016/S0006-3207(03)00146-0 CrossRefGoogle Scholar
  9. Dauber J, Wolters V (2005) Colonization of temperate grasslands by ants. Bas Appl Ecol 6:83–91. doi: 10.1016/j.baae.2004.09.011 CrossRefGoogle Scholar
  10. Dauber J, Rommeler A, Wolters V (2006) The ant Lasius flavus alters the viable seed bank in pastures. Eur J Soil Biol 42:S157–S163. doi: 10.1016/j.ejsobi.2006.06.002 CrossRefGoogle Scholar
  11. Davidson AD, Lightfood DC (2008) Burrowing rodents increase landscape heterogeneity in a desert grassland. J Arid Environ 72:1133–1145. doi: 10.1016/j.jaridenv.2007.12.015 CrossRefGoogle Scholar
  12. Davies ZG, Wilson RJ, Brereton TM, Thomas CD (2005) The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biol Conserv 124:189–198. doi: 10.1016/j.biocon.2005.01.029 CrossRefGoogle Scholar
  13. Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75:247–256CrossRefPubMedGoogle Scholar
  14. Dean WRJ, Milton SJ, Klotz S (1997) The role of ant nest-mounds in maintaining small-scale patchiness in dry grasslands in Central Germany. Biodivers Conserv 6:1293–1307CrossRefGoogle Scholar
  15. Dlussky GM (1981) Nester von Lasius flavus. Pedobiologia 21:81–99Google Scholar
  16. Drobnik J, Römermann C, Bernhardt-Römermann M, Poschlod P (2011) Adaptation of plant functional group composition to management changes in calcareous grassland. Agric Ecosyst Environ 145:29–37. doi: 10.1016/j.agee.2010.12.021 CrossRefGoogle Scholar
  17. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Bd. 2: Tagfalter II. Eugen Ulmer, StuttgartGoogle Scholar
  18. Eilers S, Pettersson LB, Ockinger E (2013) Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus. armoricanus at its northern range margin. Ecol Entomol 38:183–192. doi: 10.1111/een.12008 CrossRefGoogle Scholar
  19. Fagan KC, Pywell RF, Bullock JM, Marrs RH (2008) Are ants useful indicators of restoration success in temperate grasslands? Restor Ecol 18:373–379. doi: 10.1111/j.1526-100X.2008.00452.x CrossRefGoogle Scholar
  20. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Naturkde 66:1–256Google Scholar
  21. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  22. Fartmann T, Mattes H (2003) Störungen als ökologischer Schlüsselfaktor beim Komma-Dickkopffalter (Hesperia comma). Abh Westf Mus Naturkde 65:131–148Google Scholar
  23. Feldmann R (2009) Buckelwiesen, Buckelweiden: Häufung von Nesthügeln der Gelben Wiesenameise, Lasius flavus. Ameisenschutz akt 23:1–6Google Scholar
  24. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  25. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2nd edn. Castlepoint Press, DalbeattieGoogle Scholar
  26. Hermann G, Steiner R (1997) Eiablage- und Larvalhabitat des Komma-Dickkopffalters (Hesperia comma LINNÉ 1758). Carolinea 55:35–42Google Scholar
  27. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi: 10.2307/3545850 CrossRefGoogle Scholar
  28. Kamczyc J, Gwiazdowicz DJ (2013) The diversity of soil mites (Acari: Mesostigmata) in yellow ant (Lasius flavus) nests along a gradient of land use. Biologia 68:314–318. doi: 10.2478/s11756-013-0154-x CrossRefGoogle Scholar
  29. King TJ (1977) The plant ecology of ant-hills in calcareous grasslands. I. Patterns of species in relation to ant-hills in southern England. J Ecol 65:235–256. doi: 10.2307/2259077 CrossRefGoogle Scholar
  30. Krämer B, Poniatowski D, Fartmann T (2012a) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. doi: 10.1016/j.biocon.2012.03.038 CrossRefGoogle Scholar
  31. Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012b) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865. doi: 10.1007/s10841-012-9473-4 CrossRefGoogle Scholar
  32. Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ (2012) Local and landscape management of an expanding range margin under climate change. J Appl Ecol 49:552–561. doi: 10.1111/j.1365-2664.2011.02098.x Google Scholar
  33. Lawson CR, Bennie J, Hodgson JA, Thomas CD, Wilson RJ (2014) Topographic microclimates drive microhabitat associations at the range margin of a butterfly. Ecography 37:732–740. doi: 10.1111/ecog.00535 CrossRefGoogle Scholar
  34. Lenoir L (2009) Effects of ants on plant diversity in semi-natural grasslands. Arth-Plant Int 3:163–172. doi: 10.1007/s11829-009-9066-7 CrossRefGoogle Scholar
  35. Löffler F, Stuhldreher G, Fartmann T (2013) How much care does a shrub-feeding hairstreak butterfly, Satyrium spini (Lepidoptera: Lycaenidae), need in calcareous grasslands? Eur J Entomol 110:145–152. doi: 10.14411/eje.2013.020 CrossRefGoogle Scholar
  36. Mariotte P, Buttler A, Kohler F, Gilgen AK, Spiegelberger T (2013) How do subordinate and dominant species in semi-natural mountain grasslands relate to productivity and land-use change? Bas Appl Ecol 14:217–224. doi: 10.1016/j.baae.2013.02.003 CrossRefGoogle Scholar
  37. Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87. doi: 10.1007/s10841-007-9128-z CrossRefGoogle Scholar
  38. Müller-Wille W (1981) Westfalen. Landschaftliche Ordnung und Bindung eines Landes. 2. Auflage. Aschendorffsche Verlagsbuchhandlung, MünsterGoogle Scholar
  39. Munguira M, Garcia-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  40. Pontin AJ (1978) The numbers and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). Ecol Entomol 3:203–207. doi: 10.1111/j.1365-2311.1978.tb00920.x CrossRefGoogle Scholar
  41. R Development Core Team (2016) R: a language and environment for statistical computing http://www.R-project.org. Accessed 17 Feb 2016
  42. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70:167–194Google Scholar
  43. Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444CrossRefPubMedGoogle Scholar
  44. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig B, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy PN, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  45. Seifan M, Tielbörger K, Schloz-Murer D, Seifan T (2010) Contribution of molehill disturbances to grassland community composition along a productivity gradient. Acta Oecol 36:569–577. doi: 10.1016/j.actao.2010.08.005 CrossRefGoogle Scholar
  46. Seifert B (1993) Die freilebenden Ameisenarten Deutschlands (Hymenoptera: Formicidae) und Angaben zu deren Taxonomie und Verbreitung. Abh Ber Naturkundemus Görlitz 67:1–44Google Scholar
  47. Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, BoxbergGoogle Scholar
  48. Stoutjesdijk P, Barkman JJ (1992) Microclimate Vegetation and Fauna. Opulus Press, UppsalaGoogle Scholar
  49. Streitberger M, Fartmann T (2013) Molehills as important larval habitats for the Grizzled Skipper (Pyrgus malvae) in calcareous grasslands. Eur J Entomol 110:643–648CrossRefGoogle Scholar
  50. Streitberger M, Fartmann T (2015) Vegetation and climate determine ant-mound occupancy by a declining herbivorous insect in grasslands. Acta Oecol 68:43–49. doi: 10.1016/j.actao.2015.07.004 CrossRefGoogle Scholar
  51. Streitberger M, Hermann G, Kraus W, Fartmann T (2012) Modern forest management and the decline of the woodland brown (Lopinga achine) in Central Europe. Forest Ecol Manage 269:239–248. doi: 10.1016/j.foreco.2011.12.028 CrossRefGoogle Scholar
  52. Streitberger M, Rose S, Hermann G, Fartmann T (2014) The role of a mound-building ecosystem engineer for a grassland butterfly. J Insect Conserv 18:745–751. doi: 10.1007/s10841-014-9670-4 CrossRefGoogle Scholar
  53. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197Google Scholar
  54. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Phil Trans R Soc Lond Ser B Biol Sci 360:339–357. doi: 10.1098/rstb.2004.1585 CrossRefGoogle Scholar
  55. Thomas JA, Thomas CD, Simcox DJ, Clarke RT (1986) Ecology and declining status of the silver-spotted skipper butterfly (Hesperia comma) in Britain. J Appl Ecol 23:365–380. doi: 10.2307/2404023 CrossRefGoogle Scholar
  56. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi: 10.1126/science.1095046 CrossRefPubMedGoogle Scholar
  57. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, SchorndorfGoogle Scholar
  58. Van Dijk G (1991) The status of semi-natural grasslands in Europe. In: Goriup PD, Batten LA, Norton JA (eds) The conservation of lowland dry grassland birds in Europe. JNCC, Peterborough, pp 15–36Google Scholar
  59. van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318. doi: 10.1016/S0006-3207(01)00196-3 CrossRefGoogle Scholar
  60. Van Swaay CAM, Warren M (eds) (2003) Prime Butterfly Areas in Europe: Priority Sites for Conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, WageningenGoogle Scholar
  61. Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) (2009) Grasslands in Europe of high nature value. KNNV Publishing, ZeistGoogle Scholar
  62. Veen GF, Geuverink E, Olff H (2012) Large grazers modify effects of aboveground—belowground interactions on small-scale plant community composition. Oecologia 168:511–518. doi: 10.1007/s00442-011-2093-y CrossRefPubMedGoogle Scholar
  63. Vickery JA, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brown VK (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664. doi: 10.1046/j.1365-2664.2001.00626.x CrossRefGoogle Scholar
  64. Walker KJ, Preston CD, Boon CR (2009) Fifty years of change in an area of intensive agriculture: plant trait responses to habitat modification and conservation, Bedfordshire, England. Biodivers Conserv 18:3597–3613. doi: 10.1007/s10531-009-9662-y CrossRefGoogle Scholar
  65. Waloff N, Blackith RE (1962) The growth and distribution of the mounds of Lasius flavus (Fabricius) (Hym: Formicidae) in Silwood Park, Berkshire. J Anim Ecol 31:421–437. doi: 10.2307/2044 CrossRefGoogle Scholar
  66. Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496CrossRefGoogle Scholar
  67. Weking S, Hermann G, Fartmann T (2013) Effects of mire type, land use and climate on a strongly declining wetland butterfly. J Insect Conserv 17:1081–1091. doi: 10.1007/s10841-013-9585-5 CrossRefGoogle Scholar
  68. Wichink Kruit R, Schaap M, Segers A, Heslinga D, Builtjes P, Banzhaf S, Scheuschner T (2014) Modelling and mapping of atmospheric nitrogen and sulphur deposition and critical loads for ecosystem specific assessment of threats to biodiversity in Germany – PINETI (Pollutant INput and EcosysTem Impact). Substudy Report 1. Texte Umweltbundesamt 60/2014: 1–170Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biodiversity and Landscape EcologyUniversity of OsnabrückOsnabrückGermany
  2. 2.Institute of Biodiversity and Landscape Ecology (IBL)MünsterGermany

Personalised recommendations