Arthropod-Plant Interactions

, Volume 10, Issue 4, pp 311–322 | Cite as

Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)

  • Ana Sedlarević
  • Filis Morina
  • Ivo Toševski
  • Uroš Gašić
  • Maja Natić
  • Jelena Jović
  • Oliver Krstić
  • Sonja Veljović-Jovanović
Original Paper

Abstract

Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with Amax at 273, 332 nm (Rt 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed.

Keywords

Cecidogen Gall Linaria vulgaris Rhinusa pilosa Ovipositional fluid Phenolics 

References

  1. Abrahamson WG, Weis AE (1987) Nutritional ecology of arthropod gallmakers. In: Slanskyand FJ, Rodriquez G (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, pp 235–258Google Scholar
  2. Ahmed S, Brattsten LB (2013) Molecular aspects of insect-plant associations. Springer, BerlinGoogle Scholar
  3. Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72(13):1551–1565. doi:10.1016/j.phytochem.2011.01.040 CrossRefPubMedGoogle Scholar
  4. Barnewall EC (2011) Plant-insect interactions between yellow toadflax, Linaria vulgaris, and a potential biocontrol agent, the gall-forming weevil, Rhinusa pilosa. Doctoral dissertation, University of Lethbridge, Department of Biological SciencesGoogle Scholar
  5. Barnewall EC, De Clerck-Floate RA (2012) A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod-Plant Int 6(3):449–459. doi:10.1007/s11829-012-9193-4 CrossRefGoogle Scholar
  6. Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21(10):1511–1530. doi:10.1007/BF02035149 CrossRefPubMedGoogle Scholar
  7. Byers JA, Brewer JW, Denna DW (1976) Plant growth hormones in pinyon insect galls. Marcellia 39:125–134. http://www.chemical-ecology.net/papers/mar76.htm
  8. Caldara R, Desancic M, Gassmann A, Legarreta L, Emerson BC, Toševski I (2008) On the identity of Rhinusa hispida (Brullé) and its current synonyms (Coleoptera: Curculionidae). Zootaxa 1805:61–68Google Scholar
  9. Cheriet T, Mancini I, Seghiri R, Benayache F, Benayache S (2015) Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae). Nat Prod Res. doi:10.1080/14786419.2014.999243 PubMedGoogle Scholar
  10. Coruh S, Ercisli S (2010) Interactions between galling insects and plant total phenolic contents in Rosa canina L. genotypes. Sci Res Essays 5(14):1935–1937Google Scholar
  11. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085. doi:10.1105/tpc.7.7.1085 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 8–33Google Scholar
  13. Gassmann A, De Clerck-Floate R, Sing S, Toševski I, Mitrović M, Krstić O (2014) Biology and host specificity of Rhinusa pilosa, a recommended biological control agent of Linaria vulgaris. Biocontrol 59(4):473–483. doi:10.1007/s10526-014-9578-7 CrossRefGoogle Scholar
  14. Gupta JP (2011) Morphometric dynamics and growth differentiation in midvein and petiole galls of Salvodora oleoides Dine (Salvadoraceae). Phytomorphology 61(1/2):28–35Google Scholar
  15. Hua H, Li X, Xing S, Pei Y (2004) Study on the chemical constituents of Linaria vulgaris. Zhongguoyaoxuezazhi (Zhongguoyaoxuehui: 1989) 40(9):653–656Google Scholar
  16. Kjellberg F, Jousselin E, Hossaert-McKey M, Rasplus JY (2005) Biology, ecology, and evolution of fig-pollinating wasps (Chalcidoidea, Agaonidae). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Sciences Publishers, Enfield, pp 539–572Google Scholar
  17. Lalonde RG, Shorthouse JD (1984) Developmental morphology of the gall of Urophora cardui (Diptera, Tephritidae) in the stems of Canada thistle (Cirsiumarvense). Can J Bot. doi:10.1139/b98-143 Google Scholar
  18. Leggo JJ, Shorthouse JD (2006) Development of stem galls induced by Diplolepistriforma (Hymenoptera: Cynipidae) on Rosa acicularis (Rosaceae). Can Entomol 138:661–680. doi:10.4039/N05-086 CrossRefGoogle Scholar
  19. Lewis IF, Walton L (1947) Initiation of the cone gall of witch hazel. Science 106(2757):419–420. doi:10.1126/science.106.2757.419 CrossRefPubMedGoogle Scholar
  20. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368. doi:10.4161/psb.5.4.10871 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mani MS (1964) Ecology of plant galls. Dr. W. Junk Publishers, The HagueCrossRefGoogle Scholar
  22. Mapes CC, Davies PJ (2001) Indole-3-acetic acid and ball gall development on Solidago altissima. New Phytol 151(1):195–202. doi:10.1046/j.1469-8137.2001.00161.x CrossRefGoogle Scholar
  23. Morgan ED (2004) Biosynthesis in insects. Royal Society of Chemistry, LondonGoogle Scholar
  24. Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981. doi:10.1016/j.bse.2005.02.004 CrossRefGoogle Scholar
  25. Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci 97(24):13184–13187. doi:10.1073/pnas.230294097 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Otsuka H (1992) Isolation of isolinariins A and B, new flavonoid glycosides from Linaria japonica. J Nat Prod 55(9):1252–1255. doi:10.1021/np50087a011 CrossRefGoogle Scholar
  27. Raman A (2011) Morphogenesis of insect-induced plant galls: facts and questions. Flora 206(6):517–533. doi:10.1016/j.flora.2010.08.004 CrossRefGoogle Scholar
  28. Rani PU, Jyothsna Y (2010) Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiol Plant 32(4):695–701. doi:10.1007/s11738-009-0449-2 CrossRefGoogle Scholar
  29. Rey LA (1992) Developmental morphology of two types of Hymenopterous galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 87–101Google Scholar
  30. Saniewski M, Ueda J, Miyamoto K (2002) Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol Plant 24(2):211–220. doi:10.1007/s11738-002-0013-9 CrossRefGoogle Scholar
  31. Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls. Oxford University Press, OxfordGoogle Scholar
  32. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Eco Evol 18(10):512–522. doi:10.1016/S0169-5347(03)00247-7 CrossRefGoogle Scholar
  33. Sun Q, Chang L, Ren Y, Cao L, Sun Y, Du Y, Shi X, Wang Q, Zhang L (2012) Simultaneous analysis of 11 main active components in Cirsium setosum based on HPLC-ESI-MS/MS and combined with statistical methods. J Sep Sci 35(21):2897–2907. doi:10.1002/jssc.201200359 CrossRefPubMedGoogle Scholar
  34. Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF et al (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10(11):1801–1816. doi:10.2307/3870905 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Toševski I, Caldara R, Jović J, Hernández-Vera G, Baviera C, Gassmann A, Emerson BC (2015) Host-associated genetic divergence and taxonomy in the Rhinusa pilosa Gyllenhal species complex: an integrative approach. Syst Entomol 40(1):268–287. doi:10.1111/syen.12109 CrossRefGoogle Scholar
  36. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147–157. doi:10.1007/s10311-006-0068-8 CrossRefGoogle Scholar
  37. Valdés B (1970) Flavonoid pigments in flower and leaf of the genus Linaria (Scrophulariaceae). Phytochemistry 9(6):1253–1260. doi:10.1016/s0031-9422(00)85316-9 CrossRefGoogle Scholar
  38. Vereecke D, Messens E, Klarskov K, De Bruyn A, Van Montagu M, Goethals K (1997) Patterns of phenolic compounds in leafy galls of tobacco. Planta 201(3):342–348. doi:10.1007/s004250050076 CrossRefPubMedGoogle Scholar
  39. Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović Jovanović S (2015) Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant Cell Environ 38(5):968–979. doi:10.1111/pce.12471 CrossRefPubMedGoogle Scholar
  40. Vrchovská V, Spilková J, Valentão P, Sousa C, Andrade PB, Seabra RM (2008) Assessing the antioxidative properties and chemical composition of Linaria vulgaris infusion. Nat Prod Res 22(9):735–746. doi:10.1080/14786410601132360 CrossRefPubMedGoogle Scholar
  41. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320. doi:10.4161/psb.21663 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Weis AE, Abrahamson WG (1986) Evolution of host-plant manipulation by gall makers: ecological and genetic factors in the Solidago-Eurosta system. Am Nat. doi:10.1086/284513 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ana Sedlarević
    • 1
  • Filis Morina
    • 1
  • Ivo Toševski
    • 2
    • 4
  • Uroš Gašić
    • 3
  • Maja Natić
    • 3
  • Jelena Jović
    • 4
  • Oliver Krstić
    • 4
  • Sonja Veljović-Jovanović
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.CABIDelémontSwitzerland
  3. 3.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Department of Plant PestsInstitute for Plant Protection and EnvironmentZemunSerbia

Personalised recommendations