Skip to main content
Log in

The secret pollinators: an overview of moth pollination with a focus on Europe and North America

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Pollination is a crucial plant–animal interaction in ecosystems, and moths (Lepidoptera) are a widespread and species-rich group of flower visitors. In this article, plant and moth species connected via pollination interactions were identified from the literature, and information on the relevance of moth pollination in various ecosystems, including agro-ecosystems, was compiled, particularly for Europe and North America. Overall, 227 moth–flower pollination interactions were found, including certain specialized relationships between plants and pollinating seed predators. Most of the interactions could be attributed to the moth families Noctuidae (90 interactions, 56 species) and Sphingidae (85 interactions, 32 species), and to the plant families Orchidaceae (109 interactions, 22 species) and Caryophyllaceae (59 interactions, 16 species). Limited information is available on the role of moth pollination in natural ecosystems (7 studies). In temperate agro-ecosystems, moths are most likely not essential to crop pollination, but they can contribute to the pollination of non-crop plants, which are crucial to maintaining biodiversity in these ecosystems. In general, the role of moths as pollinators appears to be underestimated because only a few studies on moth pollination are available, and long-term, ecosystem-scale research is necessary to address temporal fluctuations in their abundance and community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrol DP (2012) Non bee pollinators–plant interaction. In: Abrol DP (ed) Pollination biology: biodiversity conservation and agricultural production. Springer, New York, pp 265–310

    Chapter  Google Scholar 

  • Alarcón R, Davidowitz G, Bronstein JL (2008a) Nectar usage in a southern Arizona hawkmoth community. Ecol Entomol 33:503–509

    Article  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008b) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807

    Article  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Argue CL (2012) Pollination biology of North American Orchids, vol 1: North of Florida and Mexico. Springer, New York

    Book  Google Scholar 

  • Atwater MM (2013) Diversity and nectar hosts of flower-settling moths within a Florida sandhill ecosystem. J Nat Hist 47:2719–2734

    Article  Google Scholar 

  • Banza P, Belo ADF, Evans DM (2015) The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a biodiversity hotspot. Insect Conserv Divers 8:538–546

    Article  Google Scholar 

  • Barthelmess EL, Richards CM, McCauley DE (2006) Relative effects of nocturnal vs diurnal pollinators and distance on gene flow in small Silene alba populations. New Phytol 169:689–698

    Article  PubMed  Google Scholar 

  • Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A (2009) Silene as a model system in ecology and evolution. Heredity 103:5–14

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bloch D, Werdenberg N, Erhardt A (2006) Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum? New Phytol 169:699–706

    Article  PubMed  Google Scholar 

  • Bopp S (2003) Parasitism or symbiosis? Interactions between a parasitic pollinator (Hadena bicruris Hufn., Lepidoptera: Noctuidae) and its host plants (Silene species, Caryophyllaceae). Zoologica (Stuttgart) 152:1–140

    Google Scholar 

  • Borkowsky C, Westwood AR (2009) Seed capsule production in the endangered Western Prairie Fringed Orchid (Platanthera praeclara) in relation to sphinx moth (Lepidoptera: Sphingidae) activity. J Lepid Soc 63:110–117

    Google Scholar 

  • Brittain C, Kremen C, Klein AM (2013) Biodiversity buffers pollination from changes in environmental conditions. Glob Change Biol 19:540–547

    Article  Google Scholar 

  • Buchmann SL, Nabhan GP (1997) The forgotten pollinators. Island Press, Washington

    Google Scholar 

  • Burkhardt A, Delph LF, Bernasconi G (2009) Benefits and costs to pollinating, seed-eating insects: the effect of flower size and fruit abortion on larval performance. Oecologia 161:87–98

    Article  PubMed  Google Scholar 

  • Cahenzli F, Erhardt A (2013) Nectar amino acids enhance reproduction in male butterflies. Oecologia 171:197–205

    Article  PubMed  Google Scholar 

  • Castillo DM, Kula AAR, Dotterl S, Dudash MR, Fenster CB (2014) Invasive Silene latifolia may benefit from a native pollinating seed predator, Hadena ectypa, in North America. Int J Plant Sci 175:80–91

    Article  Google Scholar 

  • Catling PM, Catling VR (1991) A synopsis of breeding systems and pollination in North American orchids. Lindleyana 6:187–210

    Google Scholar 

  • Clinebell RR, Crowe A, Gregory DP, Hoch PC (2004) Pollination ecology of Gaura and Calylophus (Onagraceae, Tribe Onagreae) in western Texas, USA. Ann Mo Bot Gard 91:369–400

    Google Scholar 

  • Coates MT (1977) Butterflies and pollination. Hastings East Sussex Nat 12:37–42

    Google Scholar 

  • Cuautle M, Thompson JN (2010) Diversity of floral visitors to sympatric Lithophragma species differing in floral morphology. Oecologia 162:71–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Cutler GC, Reeh KW, Sproule JM, Ramanaidu K (2012) Berry unexpected: nocturnal pollination of lowbush blueberry. Can J Plant Sci 92:707–711

    Article  Google Scholar 

  • Devoto M, Bailey S, Memmott J (2011) The ‘night shift’: nocturnal pollen-transport networks in a boreal pine forest. Ecol Entomol 36:25–35

    Article  Google Scholar 

  • Dodd RJ, Linhart YB (1994) Reproductive consequences of interactions between Yucca glauca (Agavaceae) and Tegeticula yuccasella (Lepidoptera) in Colorado. Am J Bot 81:815–825

    Article  Google Scholar 

  • Ebert G (ed) (1994) Die Schmetterlinge Baden-Württembergs. Nachtfalter I. Vol. 3. Ulmer, Stuttgart

  • Fleming TH, Holland JN (1998) The evolution of obligate pollination mutualisms: senita cactus and senita moth. Oecologia 114:368–375

    Article  Google Scholar 

  • Fox R (2012) The decline of moths in Great Britain: a review of possible causes. Insect Conserv Divers 6:5–19

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhoffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipolito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlof M, Seymour CL, Schuepp C, Szentgyorgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Benavides L, Dötterl S, Jurgens A, Escudero A, Iriondo JM (2007) Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a SileneHadena interaction. Oikos 116:1461–1472

    CAS  Google Scholar 

  • Grant V (1983) The systematic and geographical distribution of hawkmoth flowers in the temperate North American flora. Bot Gaz 144:439–449

    Article  Google Scholar 

  • Grant V (1985) Additional observations on temperate North American hawkmoth flowers. Bot Gaz 146:517–520

    Article  Google Scholar 

  • Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21:155–172

    Article  Google Scholar 

  • Hamm A, Wittmann D (2009) Pollinator group: butterflies, moth order: Lepidoptera. In: Ssymank A, Hamm A, Vischer-Leopold M (eds) Caring for pollinators. Safeguarding agro-biodiversity and wild plant diversity. Results of a workshop and research project commissioned by the German Federal Agency for Nature Conservation, vol 250. BfN-Skripten, Bonn, pp 163–166

  • Holland JN, Fleming TH (1999) Mutualistic interactions between Upiga virescens (Pyralidae), a pollinating seed-consumer, and Lophocereus schottii (Cactaceae). Ecology 80:2074–2084

    Article  Google Scholar 

  • Holland JN, Fleming TH (2002) Co-pollinators and specialization in the pollinating seed-consumer mutualism between senita cacti and senita moths. Oecologia 133:534–540

    Article  Google Scholar 

  • Jennersten O (1984) Flower visitation and pollination efficiency of some North European butterflies. Oecologia (Berlin) 63:80–89

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (1996) Reproduction and pollination in central European populations of Silene and Saponaria species. Bot Acta 109:316–324

    Article  Google Scholar 

  • Kato M, Takimura A, Kawakita A (2003) An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc Natl Acad Sci USA 100:5264–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawakita A (2010) Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Spec Biol 25:3–19

    Article  Google Scholar 

  • Kawakita A, Kato M (2006) Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Mol Ecol 15:3567–3581

    Article  CAS  PubMed  Google Scholar 

  • Kawakita A, Kato M (2009) Repeated independent evolution of obligate pollination mutualism in the Phyllantheae–Epicephala association. Proc R Soc B Biol Sci 276:417–426

    Article  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680

    Article  PubMed  Google Scholar 

  • Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393

    Article  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • King C, Ballantyne G, Willmer PG (2013) Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol 4:811–818

    Article  Google Scholar 

  • Kluser S, Pedizzi P (2007) Global pollinator decline: a literature review. UNEP/GRID-Europe, Geneva

    Google Scholar 

  • Kula AAR, Castillo DM, Dudash MR, Fenster CB (2014) Interactions between a pollinating seed predator and its host plant: the role of environmental context within a population. Ecol Evol 4:2901–2912

    Article  PubMed Central  PubMed  Google Scholar 

  • Labouche AM, Bernasconi G (2010) Male moths provide pollination benefits in the Silene latifoliaHadena bicruris nursery pollination system. Funct Ecol 24:534–544

    Article  Google Scholar 

  • LeCroy KA, Shew HW, Van Zandt PA (2013) Pollen presence on nocturnal moths in the ketona dolomite glades of Bibb County, Alabama. South Lepidopterists’ News 35:136–142

    Google Scholar 

  • Levin DA, Berube DE (1972) Phlox and Colias: the efficiency of a pollination system. Evolution 26:242–250

    Article  Google Scholar 

  • Maad J, Nilsson LA (2004) On the mechanism of floral shifts in speciation: gained pollination efficiency from tongue- to eye-attachment of pollinia in Platanthera (Orchidaceae). Biol J Linn Soc 83:481–495

    Article  Google Scholar 

  • Macgregor CJ, Pocock MJO, Fox R, Evans DM (2014) Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol Entomol 40:187–198

    Article  PubMed Central  PubMed  Google Scholar 

  • Martins DJ (2014) Butterfly pollination of the dryland wildflower Gloriosa minor. J East Afr Nat Hist 103:25–30

    Article  Google Scholar 

  • Merckx T, Marini L, Feber RE, Macdonald DW (2012) Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. J Appl Ecol 49:1396–1404

    Article  Google Scholar 

  • Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am Nat 165:411–419

    Article  PubMed  Google Scholar 

  • Murphy DD (1984) Butterflies and their nectar plants: the role of the checkerspot butterfly Euphydryas editha as a pollen vector. Oikos 43:113–117

    Article  Google Scholar 

  • Nazarov V, Buchsbaum U (2004) Widderchen als Bestäuber von Orchideen in Thüringen (Insecta, Lepidoptera, Zygaenidae). Entomofauna 25:365–372

    Google Scholar 

  • New TR (2004) Moth (Insecta: Lepidoptera) and conservation: background and perspective. J Insect Conserv 8:79–94

    Article  Google Scholar 

  • Okamoto T, Kawakita A, Kato M (2008) Floral adaptations to nocturnal moth pollination in Diplomorpha (Thymelaeaceae). Plant Spec Biol 23:192–201

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Pellmyr O (1997) Pollinating seed eaters: why is active pollination so rare? Ecology 78:1655–1660

    Article  Google Scholar 

  • Pellmyr O (2003) Yuccas, yucca moths, and coevolution: a review. Ann Mo Bot Gard 90:35–55

    Article  Google Scholar 

  • Pellmyr O, Segraves KA (2003) Pollinator divergence within an obligate mutualism: two yucca moth species (Lepidoptera; Prodoxidae: Tegeticula) on the joshua tree (Yucca brevifolia; Agavaceae). Ann Entomol Soc Am 96:716–722

    Article  Google Scholar 

  • Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575

    Article  PubMed  Google Scholar 

  • Pettersson MW (1991) Pollination by a guild of fluctuating moth populations: option for unspecialization in Silene vulgaris. J Ecol 79:591–604

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B Biol Sci 365:2959–2971

    Article  Google Scholar 

  • Reynolds RJ, Kula AAR, Fenster CB, Dudash MR (2012) Variable nursery pollinator importance and its effect on plant reproductive success. Oecologia 168:439–448

    Article  PubMed  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Shields O (1989) World numbers of butterflies. J Lepid Soc 43:178–183

    Google Scholar 

  • Sime KR, Baldwin IT (2003) Opportunistic out-crossing in Nicotiana attenuata (Solanaceae), a predominantly self-fertilizing native tobacco. BMC Ecol 3:1–9

    Article  Google Scholar 

  • Stoate C, Baldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46

    Article  CAS  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc R Soc B Biol Sci 279:1421–1429

    Article  CAS  Google Scholar 

  • Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:1780–1791

    Article  Google Scholar 

  • Travers SE, Fauske GM, Fox K, Ross AA, Harris MO (2011) The hidden benefits of pollinator diversity for the rangelands of the Great Plains: western prairie fringed orchids as a case study. Rangelands 33:20–26

    Article  Google Scholar 

  • United States Department of Agriculture [USDA] (2011) Summary Table 1—major uses of land, by region and State, United States, 2007. http://ers.usda.gov/data-products/major-land-uses.aspx#25988. Last updated 19 Dec 2011

  • von Arx M, Sullivan KA, Raguso RA (2013) Dual fitness benefits of post-mating sugar meals for female hawkmoths (Hyles lineata). J Insect Physiol 59:458–465

    Article  Google Scholar 

  • Westerbergh A (2004) An interaction between a specialized seed predator moth and its dioecious host plant shifting from parasitism to mutualism. Oikos 105:564–574

    Article  Google Scholar 

  • Westwood AR, Borkowsky CL (2004) Sphinx moth pollinators for the endangered western prairie fringed orchid, Platanthera praeclara in Manitoba, Canada. J Lepid Soc 58:13–20

    Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Young HJ (2002) Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am J Bot 89:433–440

    Article  PubMed  Google Scholar 

  • Zhang J, Wang SX, Li HH, Hu BB, Yang XF, Wang ZB (2012) Diffuse coevolution between two Epicephala species (Gracillariidae) and two Breynia species (Phyllanthaceae). PLoS One 7:1–9

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a funding program for scientists (NaWi) of the Interdisciplinary Graduate Center (IPZ), University Koblenz-Landau, granted to M. Hahn. The authors thank J. Schmitz and P. Stahlschmidt for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Hahn.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, M., Brühl, C.A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interactions 10, 21–28 (2016). https://doi.org/10.1007/s11829-016-9414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9414-3

Keywords

Navigation