Skip to main content
Log in

High incidence of pollen theft in natural populations of a buzz-pollinated plant

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

More than 20,000 angiosperm species possess non-dehiscent anthers that open through small pores at the anther’s tip. These flowers are visited by bees that use vibrations to remove pollen, a phenomenon known as buzz pollination. However, some floral visitors fail to transfer pollen efficiently, either through a mismatch of flower and insect size, or because they are unable to buzz-pollinate. These visitors collect pollen, but provide little or no pollination, behaving as pollen thieves. Although pollen theft is widespread in plants, few studies have quantified the incidence of pollen thieves for buzz-pollinated plants. We use observations of natural populations and floral manipulations of Solanum rostratum (Solanaceae) to investigate the incidence of pollen theft, find morphological and behavioural differences between pollinators and thieves, measure the pollination efficiency of visitors, and characterize the reproductive ecology of this herb. We found that most visitors act as thieves, with <20 % of all bees contacting the stigma. Insect visitors that regularly failed to contact the stigma (illegitimate visitors), included buzzing and non-buzzing bees, were significantly smaller, visited fewer flowers per bout, and stayed longer in each flower than (legitimate) visitors that regularly contact the stigma. Few flowers visited solely by illegitimate visitors set fruit. Our results show that S. rostratum requires insect visitation to set seed and natural populations experience moderate pollen limitation. We conclude that insect size, relative to the flower, is the main determinant of whether a visitor acts as a pollinator or a pollen thief in S. rostratum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi A, Vaissiere BE, Van Engelsdorp D, Delaplane KS, Roubik DW, Neumann P (2012) Back to the future: Apis versus non-Apis pollination: a response to Ollerton et al. Trends Ecol Evol 27:142–143

    Article  Google Scholar 

  • Anderson JG, Symon D (1988) Insect foragers on Solanum flowers in Australia. Ann Mo Bot Gard 75:842–852

    Article  Google Scholar 

  • Armbruster WS, Hansen TF, Pélabon C, Pérez-Barrales R, Maad J (2009) The adaptive accuracy of flowers: measurement and microevolutionary patterns. Ann Bot 103:1529–1545

    Article  PubMed Central  PubMed  Google Scholar 

  • Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4

  • Bernhardt P (1995) The floral ecology of Dianella caerulea var. assera (Phormiaceae). Cunninghamia 4:9–20

    Google Scholar 

  • Bowers KAW (1975) The pollination ecology of Solanum rostratum (Solanaceae). Am J Bot 62:633–638

    Article  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Scientific and Academic Editions, New York, pp 73–113

    Google Scholar 

  • Buchmann SL, Hurley JP (1978) A biophysical model for buzz pollination in angiosperms. J Theor Biol 72:639–657

    Article  CAS  PubMed  Google Scholar 

  • Canty A, Ripley B (2014) boot: Bootstrap R (S-Plus) Functions. R package version 1.3-11

  • Casas A, Valiente-Banuet A, Viveros J, Caballero J, Cortes L, Davila P et al (2001) Plant resources of the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 55:129–166

    Article  Google Scholar 

  • Cayuela L, Ruiz-Arriaga S, Ozers CP (2011) Honeybees increase fruit set in native plant species important for wildlife conservation. Environ Manag 48:910–919

    Article  Google Scholar 

  • De Luca PA, Vallejo-Marín M (2013) What’s the ‘buzz’ about? The ecology and evolutionary significance of buzz-pollination. Curr Opin Plant Biol 16:429–435

    Article  PubMed  Google Scholar 

  • De Luca PA, Bussiere LF, Souto-Vilaros D, Goulson D, Mason AC, Vallejo-Marín M (2013) Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia 172:805–816

    Article  PubMed  Google Scholar 

  • Duncan D, Nicotra A, Cunningham S (2004) High self-pollen transfer and low fruit set in buzz-pollinated Dianella revoluta (Phormiaceae). Aust J Bot 52:185–193

    Article  Google Scholar 

  • Dupont YL, Hansen DM, Valido A, Olesen JM (2004) Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol Conserv 118:301–311

    Article  Google Scholar 

  • Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P et al (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43

    Article  PubMed  Google Scholar 

  • Endress PK (1996) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge, p 513

    Google Scholar 

  • Faegri K, Van der Pijl L (1966) The principles of pollination ecology. Pergamon, Oxford, p 244

    Google Scholar 

  • Gao J, Ren P, Yang Z, Li Q (2006) The pollination ecology of Paraboea rufescens (Gesneriaceae): a buzz-pollinated tropical herb with mirror-image flowers. Ann Bot 97:371–376

    Article  PubMed Central  PubMed  Google Scholar 

  • García-Peña R (1976) Polinización de Solanum rostratum Dunal (Solanaceae) en el Pedregal de San Ángel, DF México. B.Sc. Dissertation, Facultad de Ciencias, Universidad Nacional Autónoma de México

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Gomez JM, Abdelaziz M, Lorite J, Munoz-Pajares JA, Perfectti F (2010) Changes in pollinator fauna cause spatial variation in pollen limitation. J Ecol 98:1243–1252

    Article  Google Scholar 

  • Goulson D, Park KJ, Tinsley MC, Bussiere LF, Vallejo-Marín M (2013) Social learning drives handedness in nectar-robbing bumblebees. Behav Ecol Sociobiol 67:1141–1150

    Article  Google Scholar 

  • Gross CL, Mackay D (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol Conserv 86:169–178

    Article  Google Scholar 

  • Harder LD, Wilson WG (1997) Theoretical perspectives on pollination. Acta Hortic 437:83–102

    Article  Google Scholar 

  • Hargreaves AL, Harder LD, Johnson SD (2009) Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol Rev 84:259–276

    Article  PubMed  Google Scholar 

  • Hargreaves AL, Harder LD, Johnson SD (2010) Native pollen thieves reduce the reproductive success of a hermaphroditic plant, Aloe maculata. Ecology 91:1693–1703

    Article  PubMed  Google Scholar 

  • Harris JA, Kuchs OM (1902) Observations on the pollination of Solanum rostratum Dunal and Cassia chamaecrista L. Kans Univ Sci Bull 1:15–41

    Google Scholar 

  • INEGI (Instituto Nacional de Estadística y Geografía) (2003) Libres, Puebla. Cuaderno estadístico municipal. http://www.inegi.org.mx Accessed February 2014

  • Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253

    Article  Google Scholar 

  • Irwin RE, Brody AK, Waser NM (2001) The impact of floral larceny on individuals, populations, and communities. Oecologia 129:161–168

    Article  Google Scholar 

  • Irwin RE, Bronstein JL, Manson JS, Richardson L (2010) Nectar robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271–292

    Article  Google Scholar 

  • Jesson LK, Barrett SCH (2002) Enantiostyly: solving the puzzle of mirror-image flowers. Nature 417:707

    Article  CAS  PubMed  Google Scholar 

  • Jesson LK, Barrett SCH (2005) Experimental tests of the function of mirror-image flowers. Biol J Linn Soc 85:167–179

    Article  Google Scholar 

  • Kawai Y, Kudo G (2009) Effectiveness of buzz pollination in Pedicularis chamissonis: significance of multiple visits by bumblebees. Ecol Res 24:215–223

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot, pp 83–84

    Google Scholar 

  • Larson BMH, Barrett SCH (1999) The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae). Am J Bot 86:502–511

    Article  CAS  PubMed  Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Lau JA, Galloway LF (2004) Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia 141:577–583

    Article  PubMed  Google Scholar 

  • Leadbeater E, Chittka L (2008) Social transmission of nectar-robbing behaviour in bumble-bees. Proc R Soc B 275:1669–1674

    Article  PubMed Central  PubMed  Google Scholar 

  • Linsley EG, Cazier MA (1963) Further observations on bees which take pollen from plants of the genus Solanum. Pac Entomol 39:1–18

    Google Scholar 

  • Liu H, Pemberton R (2009) Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum. Oecologia 159:515–525

    Article  PubMed  Google Scholar 

  • Lot A, Camarena P (2009) El Pedregal de San Ángel de la Ciudad de México: Reserva ecológica urbana de la Universidad Nacional. In: Lot A, Cano-Santana Z (eds) Biodiversidad del Pedregal de San Ángel. UNAM, Reserva Ecológica del Pedregal de San Ángel y Coordinación de la Investigación Científica, Mexico, pp 19–25

    Google Scholar 

  • Ne´eman G, Jürgens A, Newstrom-Lloyd L, Potts SG, Dafni A (2009) A framework for comparing pollinator performance: effectiveness and efficiency. Biol Rev 85:435–451

    Google Scholar 

  • Nee M (1993) Solanaceae II. In: Sosa V (ed) Flora de Veracruz, vol 72. Instituto de Ecología AC & University of California, Xalapa, pp 52

    Google Scholar 

  • Ollerton J (2012) Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends Ecol Evol 27:141–142

    Article  PubMed  Google Scholar 

  • Raine N, Chittka L (2007) Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris). Naturwissenschaften 94:459–464

    Article  CAS  PubMed  Google Scholar 

  • Raw A (2000) Foraging behaviour of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Ann Bot 85:487–492

    Article  Google Scholar 

  • Renner S (1983) The widespread occurrence of anther destruction by Trigona bees in Melastomataceae. Biotropica 15:251–256

    Article  Google Scholar 

  • Renner SS (1989) A survey of reproductive biology in Neotropical Melastomataceae and Memecylaceae. Ann Mo Bot Gard 76:496–518

    Article  Google Scholar 

  • R Core Development Team (2014) A language and environment for statistical computing R version 3.1.2. The R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/

  • Sun S, Huang S, Guo Y (2013) Pollinator shift to managed honeybees enhances reproductive output in a bumblebee-pollinated plant. Plant Syst Evol 299:139–150

    Article  Google Scholar 

  • Thorp RW (2000) The collection of pollen by bees. Plant Syst Evol 222:211–223

    Article  Google Scholar 

  • Todd JE (1882) On the flowers of Solanum rostratum and Cassia chamaecrista. Am Nat 16:281–287

    Article  Google Scholar 

  • Vallejo-Marín M, Manson JS, Thomson JD, Barrett SCH (2009) Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. J Evol Biol 22:828–839

    Article  PubMed  Google Scholar 

  • Vallejo-Marín M, Da Silva EM, Sargent RD, Barrett SCH (2010) Trait correlates and functional significance of heteranthery in flowering plants. New Phytol 188:418–425

    Article  PubMed  Google Scholar 

  • Vallejo-Marín M, Solís-Montero L, Souto Vilaros D, Lee MYQ (2013) Mating system in Mexican populations of the annual herb Solanum rostratum Dunal (Solanaceae). Plant Biol 15:948–954

    Article  PubMed  Google Scholar 

  • Vallejo-Marín M, Walker C, Friston-Reilly P, Solís-Montero L, Igic B (2014) Recurrent modification of floral morphology in heterantherous Solanum reveals a parallel shift in reproductive strategy. Philos Trans R Soc B: Biol Sci 369:20130256

    Article  Google Scholar 

  • Vergara CH, Ayala R (2002) Diversity, phenology and biogeography of the bees (Hymenoptera: Apoidea) of Zapotitlan de las Salinas, Puebla, Mexico. J Kans Entomol Soc 75:16–30

    Google Scholar 

  • Vivarelli D, Petanidou T, Nielsen A, Cristofolini G (2011) Small-size bees reduce male fitness of the flowers of Ononis masquillierii (Fabaceae), a rare endemic plant in the northern Apennines. Bot J Linn Soc 165:267–277

    Article  Google Scholar 

  • Whalen MD (1979) Taxonomy of Solanum section Androceras. Gentes Herbarum 11:359–426

    Google Scholar 

  • Zhang LJ, Lou AR (2015) Pollen limitation in invasive populations of Solanum rostratum and its relationship to population size. J Plant Ecol 8:154–158

    Article  Google Scholar 

  • Zhao J, Solís-Montero L, Lou A, Vallejo-Marín M (2013) Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae). PLoS One 8:e79807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Suarez, C. Castillo, C. Solís, E. Villagómez, C. Peralta, L. Montero, R. Pacheco, and V. Montero for assistance during field work; J. Fornoni, C. Domínguez, and R. Pérez for logistic support; J. Lozano for pollen counting; M. Abdelaziz for his comments; J. Arroyo, D. Dent, and N. Willby for providing helpful suggestions on an earlier version of the manuscript; Lars Chittka and an anonymous reviewer provided detailed and very helpful comments on previous versions of this manuscript; and A. Barragán and Family Solís-Pavón provided access and facilities at the TP and LP populations. Plant work was possible, thanks to an International Phytosanitary Certificate (Mexico, 1186043) and a Scottish Plant Health License (PH/38/2009-14). This study was partly supported by a Horizon Ph.D. Studentship from the University of Stirling, and a travel grant from The Society of Experimental Biology to LSM, as well as a Royal Society of London research Grant (RG2010-R1) to MVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lislie Solís-Montero.

Additional information

Handling Editor: Lars Chittka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11829_2015_9397_MOESM1_ESM.pdf

Principal component analysis (PCA) of the morphological characteristics of floral visitors of Solanum rostratum in natural populations in Mexico. Eigenvectors and per cent variance explained by each of the first two principal components (PC1 and PC2) (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Montero, L., Vergara, C.H. & Vallejo-Marín, M. High incidence of pollen theft in natural populations of a buzz-pollinated plant. Arthropod-Plant Interactions 9, 599–611 (2015). https://doi.org/10.1007/s11829-015-9397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9397-5

Keywords

Navigation