Skip to main content
Log in

Leaf traits, water stress, and insect herbivory: Is food selection a hierarchical process?

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant water stress can affect selectivity by insect herbivores. Numerous studies have shown greater insect preference for water-stressed plants, but others have reported the opposite response. We evaluated leaf consumption by adults of Nyctelia circumundata (a chewing insect) in leaves of Larrea divaricata and Prosopis alpataco. Three bioassays (two-way choice tests) were performed: two intra-specific comparisons between well-watered (+W) and water-stressed (−W) leaves of each species and one inter-specific comparison between leaves of the two species. Leaf biomass was reduced by water stress in both species. Nitrogen concentration in leaves (N) was reduced by drought in P. alpataco. In contrast, total phenolics and specific leaf area (SLA) did not differ between treatments within species. Nyctelia circumundata did not show preference by any water supply regimes in intra-specific comparisons. In contrast, in inter-specific choice tests, it showed a marked preference for P. alpataco, which is the species with the highest nitrogen concentration and lowest total phenolics concentration. In intra-specific comparisons, maximum leaf consumption was inversely related to SLA in both species. Furthermore, in P. alpataco, N concentration was positively related to maximum leaf consumption and negatively related to leaf water content (LWC). In contrast, in inter-specific comparisons, total phenolics was negatively related to maximum leaf consumption, while N concentration exhibited the opposite trend. These results suggest that food selection is a hierarchical process where chemical attributes (i.e., total phenolics and N) are taken into account for species selection, and physical attributes (i.e., SLA and LWC) for choosing individuals inside species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso C, Herrera CM (1990) Seasonal variation in leaf characteristics and food selection by larval noctuids on an evergreen Mediterranean shrub. Acta Oecol 21:257–265. doi:10.1016/S1146-609X(00)01082-1

    Article  CAS  Google Scholar 

  • Backhaus S, Wiehl D, Beierkuhnlein C, Jentsch A, Wellstein C (2014) Warming and drought do not influence the palatability of Quercus pubescens Willd. leaves of four European provenances. Arthropod Plant Interact 8:329–337. doi:10.1007/s11829-014-9313-4

    Google Scholar 

  • Banfield-Zanin JA, Leather SR (2014) Frequency and intensity of drought stress alters the population size and dynamics of Elatobium abietinum on Stika spruce. Ann Appl Biol 165:260–269. doi:10.1111/aab.12133

    Article  Google Scholar 

  • Banfield-Zanin JA, Leather SR (2015) Season and drought stress mediate growth and weight of the green spruce aphid on Stika spruce. Agric For Entomol 17:48–56. doi:10.1111/afe.12079

    Article  Google Scholar 

  • Bisigato AJ, Bertiller MB (1999) Seedling emergence and survival in contrasting soil microsites in Patagonian Monte shrubland. J Veg Sci 10:335–342. doi:10.2307/3237062

    Article  Google Scholar 

  • Bisigato AJ, Villagra PE, Ares JO, Rossi BE (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73:182–191. doi:10.1016/j.jaridenv.2008.09.001

    Article  Google Scholar 

  • Björkman C (2000) Interactive effects of host resistance and drought stress on the performance of a gall-making aphid living on Norway spruce. Oecologia 123:223–231. doi:10.1007/s004420051009

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2, 2nd edn. Agron. Monogr. 9. ASA-CSSA-SSSA, Madison, pp 595–624

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420. doi:10.1890/1540-9295(2003)001

    Article  Google Scholar 

  • Campanella MV, Bisigato AJ (2010) What causes changes in plant litter quality and quantity as consequence of grazing in the Patagonian Monte: plant cover reduction or changes in species composition? Austral Ecol 35:787–793. doi:10.1111/j.1442-9993.2009.02085.x

    Article  Google Scholar 

  • Cella Pizarro L, Bisigato AJ (2010) Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes. Ann Bot 106:297–307. doi:10.1093/aob/mcq109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheli GH, Corley JC, Castillo LD, Martínez FJ (2009) Una aproximación experimental a la preferencia alimentaria de Nyctelia circumundata (Coleoptera: Tenebrionidae) en el noreste de la Patagonia. Interciencia 34:771–776

    Google Scholar 

  • Cheli GH, Corley JC, Bruzzone O, Del Brio M, Martinez F, Martinez Roman N, Ríos I (2010) The ground-dwelling arthropod community of Península Valdés (Patagonia, Argentina). J Insect Sci 10:50. www.insectsicence.org/10.50

  • Cornelissen T, Fernandes GW, Vasconcellos-Neto J (2008) Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:1121–1130. doi:10.1111/j.2008.0030-1299.16588.x

    Article  Google Scholar 

  • De Bruyn L, Scheirs J, Verhagen R (2002) Nutrient stress, host plant quality and herbivore performance of a leaf-mining fly on grass. Oecologia 130:594–599. doi:10.1007/s00442-001-0840-1

    Article  Google Scholar 

  • Elger A, Willby NJ (2003) Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Funct Ecol 17:58–65. doi:10.1046/j.1365-2435.2003.00700.x

    Article  Google Scholar 

  • Gómez S, Stuefer JF (2006) Members only: induced systemic resistance to herbivory in a clonal plant network. Oecologia 147:461–468. doi:10.1007/s00442-005-0293-z

    Article  PubMed  Google Scholar 

  • Greenfield MD, Shelly TE, Downum KR (1987) Variation in host-plant quality: implications for territoriality in a desert grasshopper. Ecology 68:828–838. doi:10.2307/1938354

    Article  Google Scholar 

  • Greenfield MD, Shelly TE, Gonzalez-Coloma A (1989) Territory selection in a desert grasshopper: the maximization of conversion efficiency on a chemically defended shrub. J Anim Ecol 58:761–771

    Article  Google Scholar 

  • Gutbrodt B, Dorn S, Mody K (2012) Drought stress affects constitutive but not induced herbivore resistance in apple plants. Arthropod Plant Interact 6:171–179. doi:10.1007/s11829-011-9173-0

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178. doi:10.1016/j.ppees.2007.01.001

    Article  Google Scholar 

  • Hassell MP, Southwood TRE (1978) Foraging strategies of insects. Annu Rev Ecol Syst 9:75–98. doi:10.1146/annurev.es.09.110178.000451

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398. doi:10.1890/03-0352

    Article  Google Scholar 

  • Inbar M, Doostdar H, Mayer RT (2001) Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94:228–235. doi:10.1034/j.1600-0706.2001.940203.x

    Article  Google Scholar 

  • Koricheva J, Larsson S, Haukioja E, Keinänen M (1998a) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226

    Article  CAS  Google Scholar 

  • Koricheva J, Larsson S, Haukioja E (1998b) Insect performance on experimentally stressed woody plants: a meta-analysis. Annu Rev Entomol 43:195–216. doi:10.1146/annurev.ento.43.1.195

    Article  CAS  PubMed  Google Scholar 

  • Larsson S (1989) Stressful times for the plant stress-insect performance hypothesis. Oikos 56:277–283

    Article  Google Scholar 

  • Lockwood JR III (1998) On the statistical analysis of multiple-choice feeding preference experiments. Oecologia 116:475–481. doi:10.1007/s004420050612

    Article  Google Scholar 

  • Lower SS, Orians CM (2003) Soil nutrients and water availability interact to influence willow growth and chemistry but not leaf beetle performance. Entomol Exp Appl 107:69–79. doi:10.1046/j.1570-7458.2003.00037.x

    Article  CAS  Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118. doi:10.2307/1310365

    Article  Google Scholar 

  • Meyer MW, Karasov WH (1989) Antiherbivore chemistry of Larrea tridentata: effects on woodrat (Neotoma lepida) feeding and nutrition. Ecology 70:953–961. doi:10.2307/1941362

    Article  Google Scholar 

  • Meyer ST, Roces F, Wirth R (2006) Selecting the drought stressed: effects of plant stress on intraspecific and within-plant herbivory patterns of the leaf-cutting ant Atta colombica. Funct Ecol 20:973–981. doi:10.1111/j.1365-2435.2006.01178.x

    Article  Google Scholar 

  • Núñez MN, Solman SA, Cabré MF (2009) Regional climate change experiments over southern South America. II. Climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095. doi:10.1007/s00382-008-0449-8

    Article  Google Scholar 

  • O’Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95:1190–1194. doi:10.1603/0022-0493-95.6.1190

    Article  PubMed  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650. doi:10.1046/j.1442-9993.2003.01321.x

    Article  Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251

    Article  Google Scholar 

  • Ribeiro Neto JD, Pinho BX, Meyer ST, Wirth R, Leal IR (2012) Drought stress drives intraspecific choice of food plants by Atta leaf-cutting ants. Entomol Exp Appl 144:209–215. doi:10.1111/j.1570-7458.2012.01283.x

    Article  Google Scholar 

  • Roa R (1992) Design and analysis of multiple-choice feeding-preference experiments. Oecologia 89:509–515. doi:10.1007/BF00317157

    Article  Google Scholar 

  • Roig Juñent S, Flores GE (2001) Historia biogeográfica de las áreas áridas de América del Sur austral. In: Llorente Bousquets J, Morrone JJ (eds) Introducción a la Biogeografía de Latinoamérica: Teorías, Conceptos, Métodos y Aplicaciones. UNAM, México, pp 257–266

    Google Scholar 

  • Scharf FS, Juanes F, Sutherland M (1998) Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79:448–460. doi:10.1890/0012-9658(1998)079

    Article  Google Scholar 

  • Scheirs J, De Bruyn L (2005) Plant-mediated effects of drought stress on host preference and performance of a grass miner. Oikos 108:371–385. doi:10.1111/j.0030-1299.2005.13715.x

    Article  Google Scholar 

  • Staley JT, Mortimer SR, Masters GJ, Morecroft MD, Brown VK, Taylor ME (2006) Drought stress differentially affects leaf-mining species. Ecol Entomol 31:460–469. doi:10.1111/j.1365-2311.2006.00808.x

    Article  Google Scholar 

  • Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95. doi:10.1111/j.1365-2311.1990.tb00787.x

    Article  Google Scholar 

  • Waterman PG, Mole S (1994) Extraction and chemical quantification. In: Lawton GF, Likens GE (eds) Methods in ecology, analysis of phenolics plant metabolites. Blackwell, Oxford, UK, pp 66–103

    Google Scholar 

  • White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105. doi:10.1007/BF00379790

    Article  Google Scholar 

  • White TCR (2009) Plant vigour versus plant stress: a false dichotomy. Oikos 118:807–808. doi:10.1111/j.1600-0706.2009.17495.x

    Article  Google Scholar 

  • Wilkens RT (1997) Limitations of evaluating the growth-differentiation balance hypothesis with only two levels of light and water. Ecoscience 4:319–326

    Google Scholar 

Download references

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (BID-PICT 05-32596). We acknowledge two anonymous reviewers for their valuable comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Bisigato.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisigato, A.J., Saín, C.L., Campanella, M.V. et al. Leaf traits, water stress, and insect herbivory: Is food selection a hierarchical process?. Arthropod-Plant Interactions 9, 477–485 (2015). https://doi.org/10.1007/s11829-015-9387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9387-7

Keywords

Navigation