Arthropod-Plant Interactions

, Volume 9, Issue 5, pp 437–446 | Cite as

Immunological dependence of plant-dwelling animals on the medicinal properties of their plant substrates: a preliminary test of a novel evolutionary hypothesis

Original Paper

Abstract

We present preliminary evidence for a novel evolutionary hypothesis, i.e., that animals living on plants high in antimicrobial secondary metabolites could, via drift or selection, evolve weakened immune defenses and an immunological dependence on the antimicrobial properties of their plant substrate and/or the volatile mix in the air surrounding their plant. Animals experience immunological stress during developmental transitions, so we evaluated our hypothesis by testing for an effect of plant substrate on hatching success in the jumping spider Lyssomanes viridis, a species that constructs its egg sacs on Liquidambar styraciflua leaves. Compared with other sympatric species, L. styraciflua is known to be high in potent volatile broad-spectrum antimicrobial compounds, most notably, the monoterpene terpinen-4-ol, a well-studied antimicrobial agent known from tea tree oil. We found that L. viridis experience higher hatching success on L. styraciflua than on other sympatric species or plastic substrate controls and that L. viridis has a chemically mediated preference for this plant. In contrast to other spiders’ compact, densely woven egg sacs, L. viridis’ egg sacs are sparsely woven and the eggs widely spaced, maximizing the eggs’ surface area exposed to volatiles coming off the leaf. Similar architectures exist in distantly related taxa, suggesting convergent evolution. Our theoretical framework and preliminary results open up an unexplored frontier—the possibility that any number of plant-dwelling species may depend upon on the antimicrobial properties of the plant tissues they inhabit.

Keywords

Chemical ecology Arthropod–plant interactions Insect–plant interactions Plant–insect–microbe interactions Medicinal plants Development Fungus Bacteria Virus Infection 

Supplementary material

11829_2015_9386_MOESM1_ESM.pdf (100 kb)
Supplementary material 1 (PDF 100 kb)

References

  1. An S, Dong S, Wang Q, Li S, Gilbert LI, Stanley D, Song Q (2012) Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-kB transcription factor relish. PLoS ONE 7:e34510CrossRefPubMedCentralPubMedGoogle Scholar
  2. Baker M (1996) Fur rubbing: Use of medicinal plants by capuchin monkeys (Cebus capucinus). Am J Primatol 38:263–270CrossRefGoogle Scholar
  3. Bay N (2012) Yellow-lined Epeus spider (Epeus flavobilineatus). https://www.flickr.com/photos/nickadel/8093970882/in/photostream/
  4. Bertner P (2010) Jumping spider (Lyssomanes) female guarding eggs. Iwokrama rainforest reserve, Guyana. https://www.flickr.com/photos/rainforests/5155546541/
  5. Carson CF, Riley TV (1995) Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J Appl Bacteriol 78:264–269CrossRefPubMedGoogle Scholar
  6. Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc Biol Sci 274(1621):2013–2017CrossRefPubMedCentralPubMedGoogle Scholar
  7. Chuan-Yuan T (2008) Yellow-lined Epeus egg cluster. Segar Road, Singapore. http://www.clubsnap.com/forums/showthread.php?t=360409
  8. DeJoseph M, Taylor RSL, Baker M, Aregullin M (2002) Fur-rubbing behavior of capuchin monkeys. J Am Acad Dermatol 46(6):924–925CrossRefPubMedGoogle Scholar
  9. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316CrossRefPubMedGoogle Scholar
  10. Dubiec A, Góźdź I, Mazgajski TD (2013) Green plant material in avian nests. Avian Biol Res 6:133–146CrossRefGoogle Scholar
  11. Eberhard WG (1974) Maternal behavior in a South American Lyssomanes. Bull Br Arachnol Soc 3:51Google Scholar
  12. Faeth SH (1986) Indirect interactions between temporally separated herbivores mediated by the host plant. Ecology 67:479–494CrossRefGoogle Scholar
  13. Faeth SH, Bultman TL (1986) Interacting effects of increased tannin levels on leaf-mining insects. Entomol Exp Appl 40:297–300CrossRefGoogle Scholar
  14. Fan ZQ, Wang SB, Mu RM, Wang XR, Liu SX, Yuan XL (2009) A simple, fast, solvent-free method for the determination of volatile compounds in Magnolia grandiflora Linn. J Anal Chem 64:289–294CrossRefGoogle Scholar
  15. Gardner BT (1965) Observations on three species of Phidippus jumping spiders (Araneae: Salticidae). Psyche 72:133–147CrossRefGoogle Scholar
  16. Gompper ME, Hoylman AM (1993) Grooming with Trattinnickia resin: possible pharmaceutical plant use by coatis in Panama. J Trop Ecol 9:533–540CrossRefGoogle Scholar
  17. Guerra-Boone L, Roman RA, Salazar-Aranda R, Torres-Cirio A, Rivas-Galindo VM, de Torres NM, Gonzalez GMG, Perez-Lopez LA (2013) Chemical compositions and antimicrobial and antioxidant activities of the essential oils from Magnolia grandiflora, Chrysactinia Mexicana, and Schinus molle found in northeast Mexico. Nat Prod Commun 8:135–138PubMedGoogle Scholar
  18. Gunnarsson B (2000) Egg sacs of Pityohyphantes phrygianus are not affected by acid rain. J Arachnol 28:128–130CrossRefGoogle Scholar
  19. Hallas SEA, Jackson RR (1986) A comparative study of old and new world lyssomanines (Araneae, Salticidae): utilisation of silk and predatory behaviour of Asemonea tenuipes and Lyssomanes viridis. N Z J Zool 13:543–551CrossRefGoogle Scholar
  20. Hill DE (2010) Sunda to Sahul: Trans-Wallacean distribution of recent salticid genera (Araneae: Salticidae). Peckhamia 80(1):1–60Google Scholar
  21. Hinou JB, Harvala CE, Hinou EB (1989) Antimicrobial activity screening of 32 common constituents of essential oils. Pharmazie 44:302–303PubMedGoogle Scholar
  22. Horner NV, Starks KJ (1972) Bionomics of the jumping spider Metaphidippus galathea. Ann Entomol Soc Am 65:602–607CrossRefGoogle Scholar
  23. Jackson RR (1990) Comparative study of lyssomanine jumping spiders (Araneae: Salticidae): silk use and predatory behavior of Asemonea, Goleba, Lyssomanes, and Onomastus. N Z J Zool 17:1–6CrossRefGoogle Scholar
  24. Javagal S (2012) Epeus indicus guarding its eggs. Shimoga, Karnataka, India. http://www.projectnoah.org/spottings/15326030
  25. Jimenez-Medina D, Cordero-Gallardo A, Rojas LB, Maria RA (2007) Estudio de los componentes volatiles de las hojas y flores de Magnolia grandiflora L., que crece en el Estado Merida, Venezuela. Revista de la Facultad de Farmacia 49:2–4Google Scholar
  26. Khela S (2014) Magnolia grandiflora. The IUCN red list of threatened species. Version 2015.1. www.iucnredlist.org
  27. Klein G, Rüben C, Upmann M (2013) Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr Microbiol 67:200–208CrossRefPubMedGoogle Scholar
  28. Maisenhelder LC (1970) Magnolia (Magnolia grandiflora and Magnolia virginiana). US Department of Agriculture, Forest Service, American Woods FS-245Google Scholar
  29. Marei GIK, Abdel Rasoul MA, Abdelgaleil SAM (2012) Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic Biochem Physiol 103(1):56–61CrossRefGoogle Scholar
  30. Mondello F, De Bernadis F, Girolamo A, Cassone A, Salvatore G (2006) In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and—resistant human pathogenic Candida species. BMC Infect Dis 6:158CrossRefPubMedCentralPubMedGoogle Scholar
  31. Naigre R, Kalck P, Roques C, Roux I, Michel G (1996) Comparison of antifungal properties of monoterpenes and their carbonylated products. Planta Med 62:275–277CrossRefPubMedGoogle Scholar
  32. Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46PubMedGoogle Scholar
  33. Pazyar N, Yaghoobi R, Bagherani N, Kazerouni A (2013) A review of applications of tea tree oil in dermatology. Int J Dermatol 52:784–790CrossRefPubMedGoogle Scholar
  34. Pearse IS, Gee WS, Beck JJ (2013) Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense. J Chem Ecol 39:90–100Google Scholar
  35. Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1–5CrossRefPubMedCentralPubMedGoogle Scholar
  36. Pinto E, Pina-Vaz C, Salgueiro L, Gonçalves MJ, Costa-de-Oliveira S, Cavaleiro C, Palmeira A, Rodrigues A, Martinez-de-Oliveira J (2006) Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol 55:1367–1373CrossRefPubMedGoogle Scholar
  37. Reichling J, Suschke U, Schneele J, Geiss HK (2006) Antibacterial activity and irritation potential of selected essential oil components—structure-activity relationship. Nat Prod Commun 1:1003–1012Google Scholar
  38. Richman DB, Jackson RR (1992) A review of the ethology of jumping spiders (Araneae, Salticidae). Bull Br Arachnol Soc 9:33–37Google Scholar
  39. Richman DB, Whitcomb WH (1981) The ontogeny of Lyssomanes viridis (Walckenaer) (Araneae: Salticidae) on Magnolia grandiflora L. Psyche 88:127–134CrossRefGoogle Scholar
  40. Rovner JS (1987) Nests of terrestrial spiders maintain a physical gill: flooding and evolution of silk constructions. J Arachnol 14:327–337Google Scholar
  41. Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology, 7th edn. Cengage Learning, BostonGoogle Scholar
  42. Schuepp PH (1993) Tansley review no. 59. Leaf boundary layers. New Phytol 125:477–507CrossRefGoogle Scholar
  43. Sikkema J, de Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  44. Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63(11):3016–3022CrossRefPubMedGoogle Scholar
  45. Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS ONE 7(3):e34601CrossRefPubMedCentralPubMedGoogle Scholar
  46. Tedore C, Johnsen S (2013) Pheromones exert top-down effects on visual recognition in the jumping spider Lyssomanes viridis. J Exp Biol 216:1744–1756Google Scholar
  47. Tirillini B, Velasquez ER, Pellegrino R (1996) Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med 62:372–373CrossRefPubMedGoogle Scholar
  48. Ward EJ, Oren R, Bell DM, Clark JS, McCarthy HR, Kim H-S, Domec J-C (2013) The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE. Tree Physiol 33(2):135–151CrossRefPubMedGoogle Scholar
  49. Wink M (2010) Introduction. Ann Plant Rev Funct Biotechnol Plant Second Metab 39:1–20Google Scholar
  50. Wyllie SG, Brophy JJ (1989) The leaf oil of Liquidambar styraciflua. Planta Med 55:316–317CrossRefPubMedGoogle Scholar
  51. Yeo M (2014) Jolly telamonia jumping spider and her eggs. Singapore. http://melvynyeo.deviantart.com/art/Jolly-Telamonia-Jumping-Spider-and-her-eggs-491579846
  52. Zito M, Evans S, Weldon PJ (2003) Owl monkeys (Aotus spp.) self-anoint with plants and millipedes. Folia Primatol 74:159–161CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.Duke UniversityDurhamUSA

Personalised recommendations