Skip to main content
Log in

Species-specific effects on salicylic acid content and subsequent Myzus persicae (Sulzer) performance by three phloem-sucking insects infesting Nicotiana tabacum L.

  • Original paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) nymphs, when feeding on tobacco, generate changes that have negative systemic effects on the aphid Myzus persicae. To determine whether differences exist among defense responses induced by B. tabaci MEAM1, the whitefly Trialeurodes vaporariorum, and M. persicae, we compared salicylic acid (SA) contents in tobacco plants infested by adults and nymphs of these three species, as well as their effect on subsequently colonizing M. persicae. Plants infested with B. tabaci MEAM1 nymphs had 19.1- and 10.2-fold higher local and systemic SA levels, respectively, than the control. Infestation with T. vaporariorum caused a smaller (4.4- and 2.3-fold, respectively) increase. Nymphs of either whitefly species had significantly greater effects on SA levels than adults. SA levels in M. persicae-infested plants were 3.0- and 1.2-fold higher than in the control. Pre-infestation with B. tabaci MEAM1 nymphs significantly reduced M. persicae survival and fecundity, while T. vaporariorum nymphs reduced survival but had no effect on fecundity compared with the uninfested control. Pre-infestation with M. persicae or whitefly adults had no obvious local or systemic effects on subsequent M. persicae. The SA pathway may be a core B. tabaci MEAM1-induced defense against aphids in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alon M, Malka O, Eakteiman G, Elbaz M, Zvi MM, Vainstein A, Morin S (2013) Activation of the phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PLoS ONE. doi:10.1371/journal.pone.0076619

    Google Scholar 

  • Alvarez AE, Broglia VG, Alberti D’Amato AM, Wouters D, van der Vossen E, Garzo E, Tjallingii WF, Dicke M, Vosman B (2012) Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato aphid Macrosiphum euphorbiae. Insect Sci. doi:10.1111/j.1744-7917.2012.01505.x

    PubMed  Google Scholar 

  • Bi MJ (2010) Defense signal pathway induced by Bemisia tabaci on tobacco and the difference of physiological adaptability between B. tabaci and Myzus persicae to the defense responses. Dissertation, Shandong Agriculture University

  • Bi MJ, Xue M, Li QL, Wang HT, Liu AH (2010) Effects of feeding on tobacco plants pre-infested by Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype on activities of protective enzymes and digestive enzymes in B. tabaci and Myzus persicae (Homoptera: Aphididae). Acta Entomol Sin 53:139–146

    Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584. doi:10.1105/tpc.9.9.1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carr JP, Lewsey MG, Palukaitis P (2010) Signaling in induced resistance. In: Carr JP, Loebenstein G (eds) Natural and engineered resistance to plant viruses, Pt II. Elsevier, San Diego, pp 57–121. doi:10.1016/s0065-3527(10)76003-6

  • Costa HS, Ullman DE, Johnson MW, Tabashnik BE (1993a) Association between Bemisia tabaci density and reduced growth, yellowing, and stem blanching of lettuce, and kai choy. Plant Dis 77:969–972. doi:10.1094/PD-77-0969

    Article  Google Scholar 

  • Costa HS, Ulmanh DE, Johnson MW, Tabashnik BE (1993b) Squash silverleaf symptoms induced by immature but not adult Bemisia tabaci. Phytopathology 83:763–766. doi:10.1094/Phyto-83-763

    Article  Google Scholar 

  • de Ilarduya OM, Xie Q, Kaloshian I (2003) Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol Plant Microbe Interact 16:699–708. doi:10.1094/MPMI.2003.16.8.699

    Article  Google Scholar 

  • De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548–1560. doi:10.1111/j.1365-3040.2009.02019.x

    Article  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon L, Dicke M (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937. doi:10.1094/MPMI-18-0923

    Article  PubMed  Google Scholar 

  • De Vos M, Van Wendy Z, Koornneef A, Korzelius JP et al (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363. doi:10.1104/pp.106.083907

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley Y, Barro PD (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208. doi:10.1603/AN09061

    Article  Google Scholar 

  • Dugravot S, Brunissen L, Létocart E, Tjallingii WF, Vincent C, Giordanengo P, Cherqui A (2007) Local and systemic responses induced by aphids in Solanum tuberosum plants. Entomol Exp Appl 123:271–277. doi:10.1111/j.1570-7458.2007.00542.x

    Article  Google Scholar 

  • Estrada-Hernandez MG, Valenzuela-Soto JH, Ibarra-Laclette E, Delano-Frier JP (2009) Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol Plant 137:44–60. doi:10.1111/j.1399-3054.2009.01260.x

    Article  CAS  PubMed  Google Scholar 

  • Freeman TP, Buckner JS, Nelson DR, Chu CC, Henneberry TJ (2001) Stylet penetration by Bemisia argentifolii (Homoptera: Aleyrodidae) into host leaf tissue. Ann Entomol Soc Am 94:761–768. doi:10.1603/0013-8746(2001)094[0761:SPBBAH]2.0.CO;2

  • Girling RD, Madison R, Hassall M, Poppy GM, Turner JG (2008) Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. J Exp Bot 59:3077–3085. doi:10.1093/jxb/ern163

    Article  CAS  PubMed  Google Scholar 

  • Hebert SL, Jia LL, Goggin FL (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458–467. doi:10.1603/0046-225X(2007)36[458:QDIAVA]2.0.CO;2

  • Heidel AJ, Baldwin IT (2004) Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant, Cell Environ 27:1362–1373. doi:10.1111/j.1365-3040.2004.01228.x

    Article  CAS  Google Scholar 

  • Hu HY, Xue M, Bi MJ, Zhang X, Qu C (2013) Effects of feeding on tobacco plants pre-infested by Bemisia tabaci biotype B on activities of detoxification enzymes in Trialeurodes vaporariorum. J Food Agric Environ 11:1029–1034

    CAS  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Ann Rev Entomol 53:431–448. doi:10.1146/annurev.ento.53.032107.122456

    Article  CAS  Google Scholar 

  • Ishaaya I, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87:1185–1189. doi:10.1093/jee/87.5.1185

    Article  CAS  Google Scholar 

  • Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195–219. doi:10.1023/A:1022846630513

    Article  Google Scholar 

  • Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Plant Biol 43:491–521. doi:10.1146/annurev.phyto.43.040204.135944

    CAS  Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994. doi:10.1111/j.1461-0248.01093.x

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin I (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865. doi:10.1104/pp.106.090662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19(6):655–664. doi:10.1094/MPMI-19-0655

  • Liu TX, Oetting RD, Buntin GD (1994) Evidence of interspecific competition between Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on some greenhouse-grown plants. J Entomol Sci 29:55–65

    Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772. doi:10.1126/science.1149887

    Article  CAS  PubMed  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12:310–316. doi:10.1016/j.tplants.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell Online 4:359–366. doi:10.1105/tpc.4.3.359

    Article  CAS  Google Scholar 

  • Maynard DN, Cantliffe DJ (1989) Squash silverleaf and tomato ripening: new vegetable disorders in Florida. University of Florida, Vegetable Crop Fact Sheet VC-37

  • McCollum TG, Stoffella PJ, Powell CA, Cantliffe DJ, Hanif-Khan S (2004) Effects of silverleaf whitefly feeding on tomato fruit ripening. Postharvest Biol Tec 31:183–190. doi:10.1016/j.postharvbio.2003.09.001

    Article  Google Scholar 

  • Miles PW (1999) Aphid saliva. Bio Rev 74:41–85. doi:10.1111/j.1469-185X.1999.tb00181.x

    Article  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2002) Gene expression profiling of Arabidopsis thaliana in compatible plant–aphid interactions. Arch Insect Biochem 51:182–203. doi:10.1002/arch.10064

    Article  CAS  Google Scholar 

  • Peng L, Yan Y, Yang CH, Barro PJ, Wan FH (2013) Identification, comparison, and functional analysis of salivary phenol-oxidizing enzymes in Bemisia tabaci B and Trialeurodes vaporariorum. Entomol Exp Appl 147:282–292. doi:10.1111/eea.12068

    Article  CAS  Google Scholar 

  • Puthoff DP, Holzer FM, Perring TM, Walling LL (2010) Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 36:1271–1285. doi:10.1007/s10886-010-9868-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rekha AR, Maruthi MN, Muniyappa V, Colvin J (2005) Occurrence of three genotypic clusters of Bemisia tabaci and the rapid spread of the B biotype in south India. Entomol Exp Appl 117:221–233. doi:10.1111/j.1570-7458.2005.00352.x

    Article  Google Scholar 

  • Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574. doi:10.1046/j.1365-313x.2001.00992.x

    Article  CAS  PubMed  Google Scholar 

  • Summers CG, Estrada D (1996) Chlorotic streak of bell pepper: a new toxicogenic disorder induced by feeding of the silverleaf whitefly, Bemisia argentifolii. Plant Dis 80:822. doi:10.1094/PD-80-0822A

    Article  Google Scholar 

  • Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075–1082. doi:10.1890/08-2347.1

    Article  PubMed  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745. doi:10.1093/jxb/erj088

    Article  CAS  PubMed  Google Scholar 

  • van de Ven WTG, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423. doi:10.2307/3871139

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Ven W, Puthoff D, LeVesque C, Perring T, Walling LL (2002) Activation of novel signalling pathways by phloem-feeding whiteflies. IOBC WPRS Bull 25:33–40. http://www.iobc-wprs.org/pub/bulletins/iobc-wprs_bulletin_2002_25_06.pdf#page=53

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216. doi:10.1007/s003440000026

    CAS  PubMed  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866. doi:10.1104/pp.107.113142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CX, Xue M, Bi MJ, Li QL, Hu HY (2010) Temporal effect of tobacco defense responses to Myzus persicae (Sulzer) (Homoptera: Aphididae) induced by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype. Acta Entomol Sin 53:314–322

    Google Scholar 

  • Will T, Aart JEB (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737. doi:10.1093/jxb/erj089

    Article  CAS  PubMed  Google Scholar 

  • Xu SY (2001) Tobacco pest control in China. Science Press, Beijing

    Google Scholar 

  • Xue M, Wang CX, Bi MJ, Li Q, Liu TX (2010) Induced defense by Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environ Entomol 39:883–891. doi:10.1603/EN09307

    Article  PubMed  Google Scholar 

  • Yan Y, Liu W, Wan F (2008) Comparison of alkaline phosphatase in Bemisia tabaci B-biotype (Homoptera: Aleyrodidae) and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) at different developmental stages. Acta Entomol Sin 51:1–8

    CAS  Google Scholar 

  • Yan Y, Peng L, Liu W, Wan F (2011) Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci biotype B and Trialeurodes vaporariorum. J Insect Sci 11:9. doi:10.1673/031.011.0109

    Article  PubMed Central  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875. doi:10.1104/pp.106.090035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang GF, Lovei GL, Hu M, Wan FH (2013a) Asymmetric consequences of host plant occupation on the competition between the whiteflies Bemisia tabaci cryptic species MEAM1 and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Pest Manag Sci 70:1797–1807. doi:10.1002/ps.3713

    Article  Google Scholar 

  • Zhang PJ, Li WD, Huang F, Zhang JM, Xu FC, Lu YB (2013b) Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling. J Chem Ecol 39:612–619. doi:10.1007/s10886-013-0283-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shandong Agricultural University Tobacco Breeding Laboratory for providing tobacco seeds and all the members of the laboratory for technical assistance. This work was financially supported by the Nature Science Foundation of China (30971906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xue.

Additional information

Handling Editor: Jarmo Holopainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xue, M. & Zhao, H. Species-specific effects on salicylic acid content and subsequent Myzus persicae (Sulzer) performance by three phloem-sucking insects infesting Nicotiana tabacum L.. Arthropod-Plant Interactions 9, 383–391 (2015). https://doi.org/10.1007/s11829-015-9385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-015-9385-9

Keywords

Navigation