Arthropod-Plant Interactions

, Volume 8, Issue 5, pp 411–419 | Cite as

Differences in arthropods found in flowers versus trapped in plant resins on Haplopappus platylepis Phil. (Asteraceae): Can the plant discriminate between pollinators and herbivores?

  • Cristian A. Villagra
  • Alvaro Astudillo Meza
  • Alejandro Urzúa
Original Paper


Plants produce secondary metabolites related to ecologically relevant processes. These compounds include surface secretions such as latex, mucilage and resins that help plants face abiotic and biotic environmental threats such as drought, nutrient deficiency, extreme temperatures and UV radiation, as well as herbivory, pathogenic microorganisms and other natural enemies. We studied the resinous coating found on involucral bracts of Haplopappus platylepis Phil. (Asteraceae). This plant belongs to a speciose genus widely distributed in South America (Lane and Hartman in Am J Bot 83:356, 1996). H. platylepis is characterized by resinous fragrant leaves. In this species, resins cover the involucral bracts as well as young leaves and are also secreted on reproductive stalks in smaller amounts. We carried out chemical analysis and natural history observations in order to identify whether arthropods caught in inflorescence resin differed from the ones freely visiting floral disks. Regarding bracteal adhesive’s chemistry, we identified a mixture of diterpenoids and flavonoids; these compounds form a dense surface resin layer, especially over inflorescence’s bracts. In relation to associated arthropods, we found a marked difference in the main organisms captured by bracteal resin compared to insects we observed foraging on disk florets; Arthrobracus (Coleoptera: Melyridae) and Linepithema (Hymenoptera: Formicidae) were the predominant insects “trapped in resin”, while Diadasia (Hymenoptera: Apidae) was the most frequent “floral visitor”. We propose that bracteal resin of H. platylepis may function as a selective trap for non-mutualistic insects reaching reproductive structures of this plant and discuss other multiple possible roles for this secretion, including protocarnivory.


Constitutive resistance Terpenoids Larcenist Diadasia chilensis Lioptilodes friasi 



We are very grateful to the two anonymous reviewers for their advice and suggestions. We are in debt to Daniel Frías, Luis Flores, Héctor Vargas, Christian Gonzales, and Jaime Solervicens for help in insect identification. We also thank Rosa Scherson, Lafayette Eaton, Mary T. K. Arroyo and Kester Bull-Hereñu for invaluable advice and contribution. This research was funded by FONDECYT Iniciación No. 11100109 and CONICYT Inserción No. 79100013 to C. A. Villagra.


  1. Adlassnig W, Lendl T, Peroutka M, Lang I (2010) Deadly glue—adhesive traps of carnivorous plants. In: von Byern J, Grundwald I (eds) Biological adhesive systems: from nature to technical and medical application. Springer, Wien, p 316Google Scholar
  2. Adler LS, Irwin RE (2005) Ecological cost and benefits of defenses in nectar. Ecology 86:2968–2978CrossRefGoogle Scholar
  3. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants—phylogeny and structural evolution. Science 80:1491–1495CrossRefGoogle Scholar
  4. Aldenius J, Carlsson B, Karlsson S (1983) Effects of insect trapping on growth and nutrients Pinguicula. New Phytol 93:53–59CrossRefGoogle Scholar
  5. Armbruster WS (1984) The role of resin in angiosperm pollination: ecological and chemical considerations. Am J Bot 71:1149–1160CrossRefGoogle Scholar
  6. Armbruster WS (1996) Exaptation, adaptation, and homoplasy: evolution of ecological traits in Dalechampia Vines. In: Sanderson MJ, Hufford L (eds) Homoplasy, recurrence similarity evolution. Academic Press, London, pp 227–241Google Scholar
  7. Armbruster WS (1997) Exaptations link evolution of plant-herbivore and plant-pollinator interactions: a philotenetic inquiry. Ecology 78:1661–1672Google Scholar
  8. Armbruster WS, Howard JJ, Clausen TP, et al (1997) Do biochemical exaptations link evolution of plant defense and pollination systems? Historical hypotheses and experimental tests with dalechampia vines. Am Nat 49:461–484 Google Scholar
  9. Armbruster WS, Lee J, Baldwin BG (2009) Macroevolutionary patterns of defense and pollination in Dalechampia vines: adaptation, exaptation, and evolutionary novelty. Proc Natl Acad Sci USA 106:18085–18090. doi: 10.1073/pnas.0907051106 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chase M, Christenhusz M, Sanders D, Fay M (2009) Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory. Bot J Linn Soc 161:329–356CrossRefGoogle Scholar
  11. Corsi G, Bottega S (1999) Glandular hairs of Salvia officinalis: new data on morphology, localization and histochemistry in relation to function. Ann Bot 84:657–664CrossRefGoogle Scholar
  12. Darnowski D, Carroll D, Płachno B et al (2006) Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae). Plant Biol 8:805–812PubMedCrossRefGoogle Scholar
  13. Darwin C (1875) Insectivorous plants. John Murray, LondonGoogle Scholar
  14. Dussourd DE (1995) Entrapment of aphids and whiteflies in lettuce latex. Ann Entomol Soc Am 88:163–172Google Scholar
  15. Ellis AG, Midgley JJ (1996) A new plant–animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. Oecologia 106:478–481. doi: 10.1007/BF00329705 CrossRefGoogle Scholar
  16. Ellison AM, Gotelli NJ (2001) Evolutionary ecology of carnivorous plants. Trends Ecol Evol 16:623–629. doi: 10.1016/S0169-5347(01)02269-8 CrossRefGoogle Scholar
  17. Ellison AM, Gotelli NJ (2009) Energetics and the evolution of carnivorous plants—Darwin’s “most wonderful plants in the world”. J Exp Bot 60:19–42. doi: 10.1093/jxb/ern179 PubMedCrossRefGoogle Scholar
  18. Faini F, Labbé C, Torres R, et al (1999) Diterpenes from haplopappus chrysanthemifolius. Phytochemistry 52:1547–1550Google Scholar
  19. Gajardo R (1994) La Vegetación Natural de Chile. Clasificación y Distribución Geográfica. Editorial Universitaria, SantiagoGoogle Scholar
  20. Gassmann AJ, Hare JD (2005) Indirect cost of a defensive trait: variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia 144:62–71PubMedCrossRefGoogle Scholar
  21. Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  22. Herrera CM (1989) Pollinator abundance, morphology, and flower visitation rate: analysis of the “quantity” component in a plant-pollinator system. Oecologia 80:241–248Google Scholar
  23. Herrera CM (1990) Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos 3:277–288CrossRefGoogle Scholar
  24. Hoffmann JJ, Kingsolver BE, McLaughlin SP, Timmermann BN (1984) Production of resins by arid-adapted Astereae. Phytochem Adapt Stress Recent Adv Phytochem 18:251–271Google Scholar
  25. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et du Jura. Bull Soc Vaud Sci Nat 37:547–579Google Scholar
  26. Kent M, Coker P (1992) Vegetation description and analysis. A practical approach. CRC Press, FloridaGoogle Scholar
  27. Kerner A (1878) Flowers and their unbidden guests. C. Kegan Paul & CO, LondonGoogle Scholar
  28. Kevan PG (1983) Insects as floral visitors and pollinators. Ann Rev Entomol 28:407–453Google Scholar
  29. Klingenberg L (2007) Monographie der südamerikanischen Gattungen Haplopappus Cass. Und Notopappus L. Klingenberg (Asteraceae-Astereae). 157, 0067‐7892Google Scholar
  30. Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120Google Scholar
  31. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530. doi: 10.1016/j.phytochem.2011.02.016
  32. Krimmel BA, Pearse IS (2013) Sticky plant traps insects to enhance indirect defence. Ecol Lett 16:219–224. doi: 10.1111/ele.12032 PubMedCrossRefGoogle Scholar
  33. Lane MA, Hartman RL (1996) Reclassification of North American Haplopappus (Compositae: Astereae) Completed: Rayjacksonia gen. nov. Am J Bot 83:356. doi: 10.2307/2446170 CrossRefGoogle Scholar
  34. Langenheim JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, PortlandGoogle Scholar
  35. Leandro LM, Vargas FDS, Barbosa PCS et al (2012) Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 17:3866–3889. doi: 10.3390/molecules17043866 PubMedCrossRefGoogle Scholar
  36. Marrero MT, Estévez S, Negrín G et al (2012) Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells. Biochem Biophys Res Commun 428:116–120PubMedCrossRefGoogle Scholar
  37. McLaughlin SP, Hoffmann JJ (1982) Survey of biocrude-producing plants from the Southwest I. Econ Bot 36:323–339CrossRefGoogle Scholar
  38. Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382. doi: 10.1104/ PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ohsaki A, Yan LT, Ito S et al (1994) The isolation and in vivo Potent Antitumor activity of clerodane diterpenoid from the oleoresin of the brazilian medicinal plant, Copaifera langsdorfi desfon. Bioorg Med Chem Lett 4:2889–2892CrossRefGoogle Scholar
  40. Oliver TH, Leather SR, Cook JM (2008) Macroevolutionary patterns in the origin of mutualisms involving ants. J Evol Biol 21:1597–1608. doi: 10.1111/j.1420-9101.2008.01600.x PubMedCrossRefGoogle Scholar
  41. Real R (1999) Tables of significant values of Jaccard’ s index of similarity. Misc Zool 22:29–40Google Scholar
  42. Rhoades DF (1977) Integrated antiherbivore, antidesiccant and ultraviolet screening properties of creosotebush resin. Biochem Syst Ecol 5:281–290CrossRefGoogle Scholar
  43. Spomer GG (1999) Evidence of protocarnivorous capabilities in Geranium viscosissimum and Potentilla arguta and other sticky plants. Int J Plant Sci 160:98–101CrossRefGoogle Scholar
  44. Tojo E, Rial ME, Urzúa A, Mendoza L (1999) Diterpenes from Haplopappus deserticola. Phytochemistry 52:1531–1533CrossRefGoogle Scholar
  45. Tökés Z, Woon WC, Chambers SM (1974) Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L. Planta 46:39–46CrossRefGoogle Scholar
  46. Urzúa A (2004) Secondary metabolites in the epicuticle of Haplopappus foliosus DC. (Asteraceae). J Chil Chem Soc 49:137–141CrossRefGoogle Scholar
  47. Urzúa A, Andrade L, Jara F (2000) Comparative chemical composition of the resinous exudates from Haplopappus foliosus and H. uncinatus. Biochem Syst Ecol 28:491–493PubMedCrossRefGoogle Scholar
  48. Urzúa A, Contreras R, Jara P et al (2004) Comparative chemical composition of the trichome secreted exudates and of the Waxy coating from Haplopappus velutinus, H. illinitus, H. shumanni and H. uncinatus. Biochem Syst Ecol 32:215–218CrossRefGoogle Scholar
  49. Urzúa A, Jara F, Tojo E, et al (2006) A new antibacterial clerodane diterpenoid from the resinous exudate of Haplopappus uncinatus. J Ethnopharmacol 103:297–301Google Scholar
  50. Urzúa A, Santander R, Echeverria J, Rezende MC (2007) Secondary metabolites in the flower heads of Haplopappus berterii (Asteraceae) and its relation with insect-attracting mechanisms. J Chil Chem Soc 52:1142–1144Google Scholar
  51. Urzúa A, Echeverría J, Espinoza J, Wilkens M (2012) Lipophilicity and antibacterial activity of flavonols: antibacterial activity of resinous exudates of Haplopappus litoralis. Bol Latinoam Caribe Plant Med Aromat 11:369–376Google Scholar
  52. Voigt D, Gorb S (2008a) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. J Exp Biol 211:2647–2657. doi: 10.1242/jeb.019273 PubMedCrossRefGoogle Scholar
  53. Voigt D, Gorb S (2008b) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. J Exp Biol 211:2647–2657. doi: 10.1242/jeb.019273 PubMedCrossRefGoogle Scholar
  54. Wagner H, Bladt S (1996) Plant and drugs analysis: a thin layer chromatography atlas. Springer, BerlinGoogle Scholar
  55. Waser NM (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060CrossRefGoogle Scholar
  56. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233CrossRefGoogle Scholar
  57. Zar J (1999) Biostatistical analysis, 4th ed. Prentice Hall, New JerseyGoogle Scholar
  58. Zavala JA, Ravetta DA (2002) The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol 161:185–191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cristian A. Villagra
    • 1
  • Alvaro Astudillo Meza
    • 2
  • Alejandro Urzúa
    • 3
  1. 1.Instituto de Entomología, Facultad de Ciencias BásicasUMCESantiagoChile
  2. 2.Facultad de CienciasUniversidad de ChileSantiagoChile
  3. 3.Laboratorio de Química Ecológica, Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations