Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis

Abstract

The effects of volatile emissions from plants exposed to individual abiotic and biotic stresses are well documented. However, the influence of multiple stresses on plant photosynthesis and defense responses, resulting in a variety of volatile profiles has received little attention. In this study, we investigated how temperature regimes in the presence and absence of the sucking insect Myzus persicae affected volatile organic compound (VOC) emissions in Arabidopsis over three time periods (0–24, 24–48, and 48–72 h). Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry was used to evaluate Arabidopsis VOCs. The results showed that under laboratory conditions, eight volatile classes [alcohols (mainly 2-ethyl-hexan-1-ol), ketone (6-methyl hept-5-en-2-one), esters (mainly (Z)-3-hexenyl acetate), aldehydes (mainly phenylacetaldehyde), isothiocyanates (mainly 4-methylpentyl isothiocyanate), terpenes (mainly (E,E)-α-farnesene), nitrile (5-(methylthio) pentanenitrile), and sulfide (dimethyl trisulfide)] were observed on plants exposed to stress combinations, whereas emissions of six volatile classes were observed during temperature stress treatments alone (with the exception of nitriles and sulfides). Aphid density at high temperature combinations resulted in significantly higher isothiocyanate, ester, nitrile, and sulfide proportions. The results of the present study provide an insight into the effects of temperature–aphid interactions on plant volatile emissions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arimura GI, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    CAS  PubMed  Article  Google Scholar 

  2. Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    CAS  PubMed  Article  Google Scholar 

  3. Blande JD, Pickett JA, Poppy GM (2004) Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J Chem Ecol 30:1781–1795

    CAS  PubMed  Article  Google Scholar 

  4. Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM (2014) Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1–14

    Article  Google Scholar 

  5. Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    CAS  PubMed  Article  Google Scholar 

  6. Copolovici L, Kännaste A, Remmel T, Niinemets T (2014) Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot 100:55–63

    CAS  Article  Google Scholar 

  7. De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant, Cell Environ 32:1548–1560

    Article  Google Scholar 

  8. De Vos M, Jae HK, Jander G (2007) Biochemistry and molecular biology of Arabidopsis–aphid interactions. BioEssays 29:871–883

    PubMed  Article  Google Scholar 

  9. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    CAS  PubMed  Article  Google Scholar 

  10. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    CAS  Article  Google Scholar 

  11. Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    CAS  PubMed  Article  Google Scholar 

  12. Giorgi A, Panseri S, Nanayakkara NNMC, Chiesa L (2012) HS-SPME–GC/MS analysis of the volatile compounds of Achillea collina: evaluation of the emissions fingerprint induced by Myzus persicae infestation. J Plant Biol 55:251–260. doi:10.1007/s12374-011-0356-0

    CAS  Article  Google Scholar 

  13. Gouinguené SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    PubMed Central  PubMed  Article  Google Scholar 

  14. Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141:1164–1166

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806

    CAS  Article  Google Scholar 

  16. Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    CAS  PubMed  Article  Google Scholar 

  17. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    CAS  PubMed  Article  Google Scholar 

  18. Husson F, Josse J, Le S, Mazet J (2013) FactoMineR: multivariate exploratory data analysis and data mining with R. R package version 1.25. http://CRAN.R-project.org/package=FactoMineR

  19. Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019

    CAS  PubMed  Article  Google Scholar 

  20. Kim JH, Lee BW, Schroeder FC, Jander G (2008) Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J 54:1015–1026

    CAS  PubMed  Article  Google Scholar 

  21. Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LEM, Dicke M, van Loon JJA (2012) Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. J Chem Ecol 38:100–115

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  Article  Google Scholar 

  23. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    CAS  PubMed  Article  Google Scholar 

  25. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    CAS  PubMed  Article  Google Scholar 

  26. Louis J, Shah J (2013) Arabidopsis thalianaMyzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 4 doi:10.3389/fpls.2013.00213

  27. Louis J, Singh V, Shah J (2012) Arabidopsis thaliana–Aphid interaction. Arabidopsis Book/The American Society of Plant Biologists 10:e0159. doi:10.1199/tab.0159

  28. Ma G, Ma CS (2012) Effect of acclimation on heat-escape temperatures of two aphid species: implications for estimating behavioral response of insects to climate warming. J Insect Physiol 58:303–309

    CAS  PubMed  Article  Google Scholar 

  29. Ma CS, Hau B, Poehling HM (2004) The effect of heat stress on the survival of the rose grain aphid, Metopolophium dirhodum (Hemiptera: aphididae). Eur J Entomol 101:327–331

    Article  Google Scholar 

  30. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S. Afr. J Bot 76:612–631

    CAS  Article  Google Scholar 

  31. Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012) Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE 7:e36433

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281

    CAS  PubMed  Article  Google Scholar 

  33. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    CAS  PubMed  Article  Google Scholar 

  35. Mewis I, Khan MAM, Glawischnig E, Schreiner M, Ulrichs C (2012) Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS ONE 7:e48661

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252

    CAS  PubMed  Article  Google Scholar 

  37. Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012) Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24:1643–1653

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34

    CAS  PubMed  Article  Google Scholar 

  39. R-Development-Core-Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-projectorg/

  40. Rohloff J, Bones AM (2005) Volatile profiling of Arabidopsis thaliana–Putative olfactory compounds in plant communication. Phytochemistry 66:1941–1955

    CAS  PubMed  Article  Google Scholar 

  41. Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res D: Atmos 106:3111–3123

    CAS  Article  Google Scholar 

  42. Snoeren TAL, Kappers IF, Broekgaarden C, Mumm R, Dicke M, Bouwmeester HJ (2010) Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot 61:3041–3056

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze JP, Poëssel JL, Sauge MH (2010) Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol 30:1320–1334

    CAS  PubMed  Article  Google Scholar 

  44. Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    CAS  PubMed  Article  Google Scholar 

  45. Tariq M, Wright DJ, Bruce TJA, Staley JT (2013) Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS One 8:e69013

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis B 9:e0143. doi:10.1199/tab.0143

    Article  Google Scholar 

  47. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    CAS  PubMed  Article  Google Scholar 

  48. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  49. Van Poecke RM (2007) Arabidopsis–insect interactions. Arabidopsis Book/The American Society of Plant Biologists 5:e0107. doi:10.1199/tab.0107

  50. Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC (2013) Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores. Arthropod Plant Interact 7:567–577

    Article  Google Scholar 

  51. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    CAS  PubMed  Article  Google Scholar 

  52. Vos M, Berrocal SM, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid—Herbivore communities. Ecol Lett 4:38–45

    Article  Google Scholar 

  53. Vuorinen T, Nerg AM, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131:305–311

    CAS  PubMed  Article  Google Scholar 

  54. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B (2013) Gplots: various R programming tools for plotting data. R package version 2.11.3. http://CRAN.R-project.org/package=gplots

  55. Winter TR, Rostás M (2010) Nitrogen deficiency affects bottom-up cascade without disrupting indirect plant defense. J Chem Ecol 36:642–651

    CAS  PubMed  Article  Google Scholar 

  56. Winter TR, Borkowski L, Zeier J, Rostás M (2012) Heavy metal stress can prime for herbivore-induced plant volatile emission. Plant Cell Environ 35:1287–1298

    CAS  PubMed  Article  Google Scholar 

  57. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

Dieu-Hien Truong is recipient of a Ph.D. scholarship from Ministry of Education and Training Vietnam. Benjamin Delory and Maryse Vanderplanck received financial support from the Belgian Fund for Scientific Research (FRS-FNRS). The authors are grateful to Dr. Ian Dublon (Evolutionary Ecology and Genetics Group, Earth and Life Institute, Université catholique de Louvain) for his helpful collaboration.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dieu-Hien Truong or Georges Lognay.

Additional information

Handling Editor: Jarmo Holopainen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 611 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Truong, DH., Delory, B.M., Vanderplanck, M. et al. Temperature regimes and aphid density interactions differentially influence VOC emissions in Arabidopsis . Arthropod-Plant Interactions 8, 317–327 (2014). https://doi.org/10.1007/s11829-014-9311-6

Download citation

Keywords

  • Arabidopsis thaliana
  • Myzus persicae
  • Temperature regimes
  • Stress combination
  • Volatile organic compounds (VOCs)