Skip to main content

Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: II. Fruit surfaces of different apple cultivars

Abstract

In the late growing season of apples, most eggs of the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), of the second and third generations are deposited directly on fruits. The apple fruit surface is densely covered by three-dimensional micro- and nanoprojections, the epicuticular wax crystals, emerging from an underlying wax film. These epicuticular waxes render the apple fruit surface hydrophobic, which could affect the attachment of insect legs and eggs to it. A better survival of the codling moth offspring is expected to be ensured by the selection of suitable oviposition sites by females, as well as by a proper adhesion of deposited eggs to these sites. In this study, we investigated egg adhesion of the codling moth to the fruit surface of different cultivars of the domestic apple, Malus domestica Borkh., by measuring the pull-off force required to detach eggs from fruits. Since surface characteristics may influence insect egg adhesion, the information about morphological and physicochemical properties of the fruit surface is crucial for understanding oviposition site selection by females. In the present study, surface morphology, wettability, and free surface energy of the apple cultivars ‘Boskoop’, ‘Elstar’, ‘Golden Delicious’, ‘Jonica’, and ‘Topaz’ were analyzed. Eggs adhered tightly to the fruit surface of all apple cultivars tested: pull-off forces averaged 63.9 mN. These forces are four- to tenfold stronger than those previously measured on adaxial and abaxial leaf surfaces of the identical apple cultivars. The mechanisms used by the moth to fix its eggs on the waxy surface of apple fruits, and the influence of fruit surface properties on egg glue adhesion are discussed. Furthermore, the results are debated in the context of the oviposition site selection by females, and its role in offspring survival of the second and third generations of the codling moth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aghdam HR, Fathipour Y, Radjabi G, Rezapanah M (2009) Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ Entomol 38:885–895

    PubMed  Google Scholar 

  2. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2009) Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. J Insect Physiol 55:1029–1038

    CAS  PubMed  Google Scholar 

  3. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2010) Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J Insect Physiol 56:1966–1972

    CAS  PubMed  Google Scholar 

  4. Al Bitar L, Gorb SN, Zebitz CPW, Voigt D (2012) Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars. Arthropod Plant Interact 6:471–488

    Google Scholar 

  5. Amiri A, Cholodowski D, Bompeix G (2005) Adhesion and germination of waterborne and airborne conidian of Penicillium expansum to apple and inert surfaces. Physiol Mol Plant Pathol 67:40–48

    CAS  Google Scholar 

  6. Amornsak W, Noda T, Yamashita O (1992) Accumulation of glue proteins in the developing colleterial glands of the silkworm, Bombyx mori. J Seric Sci Jpn 61:123–130

    CAS  Google Scholar 

  7. Audemard H (1991) Population dynamics of the codling moth. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: Their biology, natural enemies and control. Elsevier, Amsterdam, pp 329–338

    Google Scholar 

  8. Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Structure-function relationships of the plant cuticle and cuticular waxes – a smart material? Funct Plant Biol 33:893–910

    CAS  Google Scholar 

  9. Barnes MM (1991) Codling moth occurrence, host race formation, and damage. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 313–327

    Google Scholar 

  10. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Google Scholar 

  11. Beament JWL, Lal R (1957) Penetration through the egg-shell of Pieris brassicae (L.). Bull Entomol Res 48:109–125

    CAS  Google Scholar 

  12. Belding RD, Blankenship SM, Young E, Leidy RB (1998) Composition and variability of epicuticular waxes in apple cultivars. J Am Soc Hort Sci 123:348–356

    CAS  Google Scholar 

  13. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems from nature to technical and medical application. Springer, Wien, pp 111–152

    Google Scholar 

  14. Blago N, Dickler E (1990) Neue Methode zur Untersuchung der Ei-Phänologie des Apfelwicklers, Cydia pomonella L. (Lep., Tortricidae). J Appl Entomol 109:98–104

    Google Scholar 

  15. Blomefield TL, Giliomee JH (2009) Development rates of the embryonic and immature stages of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), at constant and fluctuating temperatures. Afr Entomol 17:183–191

    Google Scholar 

  16. Blomefield TL, Pringle KL, Sadie A (1997) Field observations on oviposition of codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Olethreutidae), in an unsprayed apple orchard in South Africa. Afr Entomol 5:319–336

    Google Scholar 

  17. Bonebrake TC, Boggs CL, McNally JM, Ranganathan J, Ehrlich PR (2010) Oviposition behavior and offspring performance in herbivorous insects: consequences of climatic and habitat heterogeneity. Oikos 119:927–934

    Google Scholar 

  18. Borchert DM, Stinner RE, Walgenbach JF, Kennedy GG (2004) Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. J Econ Entomol 97:1353–1364

    CAS  PubMed  Google Scholar 

  19. Borden AD (1931) Some field observations on codling moth behavior. J Econ Entomol 24:1137–1145

    Google Scholar 

  20. Burgess IF (2010) Do nit removal formulations and other treatments loosen head louse eggs and nits from hair? Med Vet Entomol 24:55–61

    CAS  PubMed  Google Scholar 

  21. Burkhart CN, Stankiewicz BA, Pchalek I, Kruge MA, Burkhart CG (1999) Molecular composition of the louse sheath. J Parasitol 85:559–561

    CAS  PubMed  Google Scholar 

  22. Casado CG, Heredia A (2001) Ultrastructure of the cuticle during growth of the grape berry (Vitis vinifera). Physiol Plant 111:220–224

    CAS  Google Scholar 

  23. Cheung PJ, Ruggierl GD, Nigrelli RF (1977) A new method for obtaining barnacle cement in the liquid state for polymerization studies. Mar Biol 43:157–163

    Google Scholar 

  24. Chickering DE III, Mathiowitz E (1999) Definitions, mechanisms, and theories of bioadhesion. In: Mathiowitz E, Chickering DE III, Lehr C-M (eds) Bioadhesive drug delivery systems: fundamentals, novel approaches, and development. Marcel Dekker, NewYork, pp 1–10

    Google Scholar 

  25. Cogley TP, Cogley MC (1989) Morphology of the eggs of the human bot fly, Dermatobia hominis (L. Jr.) (Diptera: Cuterebridae) and their adherence to the transport carrier. Int J Insect Morphol Embryol 18:239–248

    Google Scholar 

  26. Cogley TP, Anderson JR, Weintraub J (1981) Ultrastructure and function of the attachment organ of warble fly eggs (Diptera: Oestridae: Hypodermatinae). Int J Insect Morphol Embryol 10:7–18

    Google Scholar 

  27. Considine JA, Brown KC (1981) Physical aspects of fruit growth: theoretical analysis of distribution of surface growth forces in fruit in relation to cracking and splitting. Plant Physiol 68:371–376

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Creasy LL (1980) The correlation of weather parameters with russet of ‘Golden Delicious’ apples under orchard conditions. J Am Soc Hort Sci 105:735–738

    Google Scholar 

  29. Curry EA (2005) Ultrastructure of epicuticular wax aggregates during fruit development in apple (Malus domestica Borkh.). J Hort Sci Biotechnol 80:668–676

    Google Scholar 

  30. Curry, EA (2009) Growth-induced microcracking and repair mechanisms of fruit cuticles. In: Society for experimental mechanics. Proceedings: SEM annual conference and exposition on experimental and applied mechanics; 2009. p. 1751–1757

  31. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: Insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223

    CAS  PubMed  Google Scholar 

  32. Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod Struct Dev 33:91–102

    CAS  PubMed  Google Scholar 

  33. Eigenbrode SD, Kabalo NN (1999) Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergens. Entomol Exp Appl 91:125–130

    Google Scholar 

  34. Eigenbrode SD, Castagnola T, Roux MB, Steljes L (1996) Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomol Exp Appl 81:335–343

    Google Scholar 

  35. Eigenbrode SD, White C, Rohde M, Simon CJ (1998) Behavior and effectiveness of adult Hippodamia convergens (Coleoptera: Coccinellidae) as a predator of Acyrthosiphon pisum (Homoptera: Aphididae) on a wax mutant of Pisum sativum. Environ Entomol 27:902–909

    Google Scholar 

  36. El-Otmani M, Arpaia ML, Coggins CW, Pehrson JE, O’Connell NV (1989) Developmental changes in ‘Valencia’ orange fruit epicuticular wax in relation to fruit position on the tree. Sci Hortic 41:69–81

    Google Scholar 

  37. Ensikat HJ, Boese M, Mader W, Barthlott W, Koch K (2006) Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chem Phys Lipids 144:45–59

    CAS  PubMed  Google Scholar 

  38. Faust M, Shear CB (1972a) Fine structure of the fruit surface of three apple cultivars. J Am Soc Hort Sci 97:351–355

    Google Scholar 

  39. Faust M, Shear CB (1972b) Russeting of apples, an interpretive review. HortScience 7:233–235

    Google Scholar 

  40. Fordyce JA, Nice CC (2003) Variation in butterfly egg adhesion: adaptation to local host plant senescence characteristics? Ecol Lett 6:23–27

    Google Scholar 

  41. Forister ML, Fordyce JA, Nice CC, Compert Z, Shapiro AM (2006) Egg morphology varies among populations and habitats along a suture zone in the Lycaeides idas-melissa species complex (Lepidoptera: Lycaenidae). Ann Entomol Soc Am 99:933–937

    Google Scholar 

  42. Franchini MC, Hernández LF, Lindström LI (2010) Cuticle and cuticular wax development in the sunflower (Helianthus annuus L.) pericarp grown at the field under a moderate water deficit. Phyton (Buenos Aires) 79:153–161

    Google Scholar 

  43. Gaume L, Perret P, Gorb E, Gorb S, Labat J–J, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111

    CAS  PubMed  Google Scholar 

  44. Geier PW (1963) The life history of codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) in the Australian Capital Territory. Aust J Zool 11:323–367

    Google Scholar 

  45. Gibert C, Chadœuf J, Vercambre G, Génard M, Lescourret F (2007) Cuticular cracking on nectarine fruit surface: spatial distribution and development in relation to irrigation and thinning. J Am Soc Hort Sci 132:583–591

    Google Scholar 

  46. Glenn GM, Rom CR, Rasmussen HP, Poovaiah BW (1990) Influence of cuticular structure on the appearance of artificially waxed ‘Delicious’ apple fruit. Sci Hortic 42:289–297

    Google Scholar 

  47. Gorb SN (2001) Attachment devices of insect cuticle. Kluwer, Dordrecht

    Google Scholar 

  48. Gorb SN (2008) Biological attachment devices: exploring nature’s diversity for biomimetics. Phil Trans R Soc A 366:1557–1574

    PubMed  Google Scholar 

  49. Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13–28

    Google Scholar 

  50. Gorb EV, Gorb SN (2006) Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). Plant Biol 8:841–848

    CAS  PubMed  Google Scholar 

  51. Gorb EV, Gorb SN (2009) Effect of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula. Entomol Exp Appl 130:222–228

    Google Scholar 

  52. Gorb E, Voigt D, Eigenbrode SD, Gorb S (2008) Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod Plant Interact 2:247–259

    Google Scholar 

  53. Habenicht G (2002) Kleben: Grundlagen, Technologien, Anwendung, 4th edn. Springer, Berlin

    Google Scholar 

  54. Hagley EAC, Bronskill JF, Ford EJ (1980) Effect of the physical nature of leaf and fruit surfaces on oviposition by the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Can Entomol 112:503–510

    Google Scholar 

  55. Hinton HE (1981) Biology of insect eggs. vol I–III. Oxford: Pergamon Press

  56. Huang Y, Leobandung W, Foss A, Peppas NA (2000) Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 65:63–71

    CAS  PubMed  Google Scholar 

  57. Jackson DM (1979) Codling moth egg distribution on unmanaged apple trees. Ann Entomol Soc Am 72:361–368

    Google Scholar 

  58. Jackson DM (1982) Searching behavior and survival of 1st-instar codling moths. Ann Entomol Soc Am 75:284–289

    Google Scholar 

  59. Jackson DM, Hardwood RE (1980) Survival potential of first instars of the codling moth in laboratory experiments. Ann Entomol Soc Am 73:160–163

    Google Scholar 

  60. Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood SR (eds) Insects and the plant surface. Edward Arnold, London, pp 23–64

    Google Scholar 

  61. Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Jin Y, Chen YL, Jiang Y, Xu M (2006) Proteome analysis of the silkworm (Bombyx mori L.) colleterial gland during different development stages. Arch Insect Biochem Physiol 61:42–50

    CAS  PubMed  Google Scholar 

  63. Knoche M, Grimm E (2008) Surface moisture induces microcracks in the cuticle of ‘Golden Delicious’. HortScience 43:1929–1931

    Google Scholar 

  64. Knoche M, Peschel S (2007) Deposition and strain of the cuticle of developing European plum fruit. J Amer Soc Hort Sci 132:597–602

    Google Scholar 

  65. Koch K (2011) Design of hierarchically sculptured biological surfaces with anti-adhesive properties. In: Hicks MG, Kettner C (eds) Functional nanoscience. Logos, Berlin, pp 167–178

  66. Koch K, Ensikat HJ (2008) The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Rev Micron 39:759–772

    CAS  Google Scholar 

  67. Koch K, Bushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963

    CAS  Google Scholar 

  68. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178

    CAS  Google Scholar 

  69. Koch K, Neinhuis C, Ensikat H-J, Barthlott W (2004) Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J Exp Bot 55:711–718

    CAS  PubMed  Google Scholar 

  70. Konarska A (2012) Differences in the fruit peel structures between two apple cultivars during storage. Acta Sci Polonorum-Hortorum Cultus 11:105–116

    Google Scholar 

  71. Li D, Huson MG, Graham LD (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch Insect Biochem Physiol 69:85–105

    CAS  PubMed  Google Scholar 

  72. Lombarkia N, Derridj S (2002) Incidence of apple fruit and leaf surface metabolites on Cydia pomonella oviposition. Entomol Exp Appl 104:79–87

    CAS  Google Scholar 

  73. Lurie S, Fallik E, Klein JD (1996) The effect of heat treatment on apple epicuticular wax and calcium uptake. Postharvest Biol Technol 8:271–277

    CAS  Google Scholar 

  74. Maguire KM, Lang A, Banks NH, Hall A, Hopcroft D, Bennett R (1999) Relationship between water vapour permeance of apples and micro-cracking of the cuticle. Postharvest Biol Technol 17:89–96

    Google Scholar 

  75. McDonald RE, Nordby HE, McCollum TG (1993) Epicuticular wax morphology and composition are related to grapefruit chilling injury. HortScience 28:311–312

    Google Scholar 

  76. Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J, van den Boom T (1994) Phänologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.) des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria x ananassa Duch.). Nachrichtenbl Dt Pflanzenschutzd 46:141–153

    Google Scholar 

  77. Meyer A (1944) A study of the skin structure of Golden Delicious apples. Proc Am Soc Hort Sci 45:105–110

    Google Scholar 

  78. Morice IM, Shorland FB (1973) Composition of the surface waxes of apple fruits and changes during storage. J Sci Food Agric 24:1331–1339

    CAS  PubMed  Google Scholar 

  79. Mphosi MS, Foster SP (2010) Female preference and larval performance of sunflower moth, Homoeosoma electellum, on sunflower pre-breeding lines. Entomol Exp Appl 134:182–190

    Google Scholar 

  80. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651

    PubMed  Google Scholar 

  81. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Google Scholar 

  82. Nickles EP, Ghiradella H, Bakhru H, Haberl A (2002) Egg of the karner blue butterfly (Lycaeides melissa samuelis): morphology and elemental analysis. J Morphol 251:140–148

    CAS  PubMed  Google Scholar 

  83. Nosonovsky M, Bhushan B (2005) Roughness optimization for biomimetic superhydrophobic surfaces. Microsyst Technol 11:535–549

    CAS  Google Scholar 

  84. Opara UL (1993) A study on stem-end splitting in apples. PhD Thesis, Massey University, New Zealand

  85. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    CAS  Google Scholar 

  86. Peet MM (1992) Fruit cracking in tomato. Hort Technol 2:216–223

    Google Scholar 

  87. Peppas NA, Buri PA (1985) Surface interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Controlled Release 2:257–275

    CAS  Google Scholar 

  88. Plourde DF, Goonewardene HF, Kwolek WF (1985) Pubescence as a factor in codling moth oviposition and fruit entry in five apple selections. HortScience 20:82–83

    Google Scholar 

  89. Proctor JTA, Lougheed EC (1980) Cracking of Golden Russet apples. Can Plant Dis Surv 60:55–58

    Google Scholar 

  90. Renwick JAA (1989) Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228

    CAS  Google Scholar 

  91. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Google Scholar 

  92. Riley RC, Forgash AJ (1967) Drosophila melongaster eggshell adhesive. J Insect Physiol 13:509–517

    CAS  PubMed  Google Scholar 

  93. Roy S, Conway WS, Watada AE, Sams CE, Erbe EF, Wergin WP (1994) Heat treatment affects epicuticular wax structure and postharvest calcium uptake in ‘Golden Delicious’ apples. HortScience 29:1056–1058

    Google Scholar 

  94. Santos R, Gorb S, Jamar V, Flammang P (2005) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567

    PubMed  Google Scholar 

  95. Scherge M, Gorb S (2001) Biological micro- and nano-tribology. Springer, Berlin

    Google Scholar 

  96. Scholz I (2009) Ultrastructure and functional morphology of adhesive organs and anti-adhesive plant surfaces. PhD Thesis, RWTH Aachen University, Aachen

  97. Schwerdtfeger G (1972) Die Oberfläche der Apfelfrucht in Aufnahmen mit dem Raster-Elektronen-Mikroskop und Elektronen-Mikroskop. Der Erwerbsobstbau 14:17–20

    Google Scholar 

  98. Shel’Deshova GG (1967) Ecological factors determining distribution of the codling moth, Laspeyresia pomonella L. (Lepidoptera: Tortricidae) in the northern and southern hemispheres. Annu Rev Entomol 46:349–361

    Google Scholar 

  99. Simčič M, Kadunc M, Hribar J, Vidrih R (2007) Influence of cultivar and storage time on the content of higher fatty acids in apple cuticle. Veg Crops Res Bull 66:197–203

    Google Scholar 

  100. Singer MC, Ng D, Thomas CD (1988) Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985

    Google Scholar 

  101. Skene DS (1963) The fine structure of apple, pear, and plum fruit surfaces, their changes during ripening, and their response to polishing. Ann Bot 37:581–587

    Google Scholar 

  102. Smart JD (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 57:1556–1568

    CAS  PubMed  Google Scholar 

  103. Stork NE (1980) Role of waxblooms in preventing attachment to Brassicas by the mustard beetle, Phaedon cochleariae. Entomol Exp Appl 28:100–107

    Google Scholar 

  104. Subinprasert S, Svensson BW (1988) Effects of predation on clutch size and egg dispersion in the codling moth Laspeyresia pomonella. Ecol Entomol 13:87–94

    Google Scholar 

  105. Thiery D, Gabel B, Farkas P, Jarry M (1995) Egg dispersion in codling moth: influence of egg extract and of its fatty acid constituents. J Chem Ecol 21:2015–2026

    CAS  PubMed  Google Scholar 

  106. Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Google Scholar 

  107. Uehara K, Sakurai M (2002) Bonding strength of adhesives and surface roughness of joined parts. J Mater Process Technol 127:178–181

    Google Scholar 

  108. Velásquez P, Skurtys O, Enrione J, Osorio F (2011) Evaluation of surface free energy of various fruit epicarps using acid-base and Zisman approaches. Food Biophys 6:349–358

    Google Scholar 

  109. Verardo G, Pagani E, Geatti P, Martinuzzi P (2003) A thorough study of the surface wax of apple fruits. Anal Bioanal Chem 376:659–667

    CAS  PubMed  Google Scholar 

  110. Veraverbeke EA, Bruaene NV, Oostveldt PV, Nicolaï BM (2001) Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy. Planta 213:525–533

    CAS  PubMed  Google Scholar 

  111. Veraverbeke EA, Verboven P, Van Oostveldt P, Nicolaï BM (2003) Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp. Mitis (Wallr.)) during storage: part 1. Model development and determination of diffusion coefficients. Postharvest Biol Technol 30:75–88

    Google Scholar 

  112. Voigt D, Gorb S (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc Lond B 277:895–903

    Google Scholar 

  113. Wang H, Feng H, Liang W, Luo Y, Malyarchuk V (2009) Effect of surface roughness on retention and removal of Escherichia coli O157:H7 on surfaces of selected fruits. J Food Sci 74:E8–E15

    CAS  PubMed  Google Scholar 

  114. Witzgall P, Ansebo L, Yang Z, Angeli G, Sauphanor B, Bengtsson M (2005) Plant volatiles affect oviposition by codling moths. Chemoecology 15:77–83

    CAS  Google Scholar 

  115. Wojcik P, Dyki B, Cieslinski G (1997) Fine structure of the fruit surface of seven apple cultivars. J Fruit Ornam Plant Res 5:119–127

    Google Scholar 

  116. Wood TG (1965) Field observations on flight and oviposition of codling moth (Carpocapsa pomonella L.) and mortality of eggs and first-instar larvae in an integrated control orchard. N Z J Agric Res 8:1043–1059

    CAS  Google Scholar 

  117. Yan F, Bengtsson M, Witzgall P (1999) Behavioral response of female codling moths, Cydia pomonella, to apple volatiles. J Chem Ecol 25:1343–1351

    CAS  Google Scholar 

  118. Yokoyama VY, Miller GT, Hartsell PL (1990) Evaluation of a methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) on nectarine cultivars proposed for export to Japan. J Econ Entomol 83:466–471

    CAS  Google Scholar 

Download references

Acknowledgments

The first author is grateful for the help of Martin Hofmeister (Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany) in preparation of figures. Frank Körner (Max Planck Institute for Metals Research, Stuttgart, Germany) assisted in contact angle measurements. This study was supported by a PhD grant from Syria to LAB.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Loris Al Bitar.

Additional information

Communicated by Handling editor: Heikki Hokkanen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al Bitar, L., Gorb, S.N., Zebitz, C.P.W. et al. Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: II. Fruit surfaces of different apple cultivars. Arthropod-Plant Interactions 8, 57–77 (2014). https://doi.org/10.1007/s11829-013-9288-6

Download citation

Keywords

  • Attachment
  • Epicuticular waxes
  • Glue
  • Malus domestica
  • Oviposition
  • Plant surface