Skip to main content

Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores

Abstract

Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agelopoulos NG, Keller MA (1994) Plant natural enemy association in tritrophic system, Cotesia-Rubecula–Pieris-rapae–Brassicaceae (Cruciferae). 3. Collection and identification of plant and frass volatiles. J Chem Ecol 20(8):1955–1967

    Article  CAS  Google Scholar 

  2. Almohamad R, Verheggen FJ, Francis F, Lognay G, Haubruge E (2008) Emission of alarm pheromone by non-preyed aphid colonies. J Appl Entomol 132:601–604

    Article  CAS  Google Scholar 

  3. Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85(3):257–262

    Article  Google Scholar 

  4. Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affect aphid and parasitoid behavior. P Natl Acad Sci USA 103(27):10509–10513

    Article  CAS  Google Scholar 

  5. Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87(2):133–142

    Article  CAS  Google Scholar 

  6. Blande JD, Pickett JA, Poppy GM (2004) Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J Chem Ecol 33:1781–1795

    Article  Google Scholar 

  7. Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33(4):767–779

    PubMed  Article  CAS  Google Scholar 

  8. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    PubMed  Article  CAS  Google Scholar 

  9. Bowers WS, Webb RE, Nault LR (1972) Aphid alarm pheromone—isolation, identification, synthesis. Science 177(4054):1121

    PubMed  Article  CAS  Google Scholar 

  10. Cavaleiro C, Salgueiro LR, Antunes T, Sevinate-Pinto I, Barros JG (2002) Composition of the essential oil and micromorphology of trichomes of Teucrium salviastrum, an endemic species from Portugal. Flav Frag J 17(4):287–291

    Article  CAS  Google Scholar 

  11. Chen SX, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127:194–201

    PubMed  Article  CAS  Google Scholar 

  12. David CT, Hardie J (1988) The visual responses of free-flying summer and autumn forms of the black bean aphid, Aphis fabae, in an automated flight chamber. Physiol Entomol 13:277–284

    Article  Google Scholar 

  13. Dawson GW, Griffiths DC, Pickett JA, Smith MC, Woodcock CM (1984) Natural inhibition of the aphid alarm pheromone. Entomol Exp Appl 36(2):197–199

    Article  CAS  Google Scholar 

  14. De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393(11):570–573

    Article  Google Scholar 

  15. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577–580

    PubMed  Article  Google Scholar 

  16. de Vos M, Jander G (2010) Volatile communication in plant-aphid interactions. Curr Opin Plant Biol 13(4):366–371

    PubMed  Article  Google Scholar 

  17. Dicke M, Baarlen PV, Wessels R, Dijkman H (1993) Herbivory induces systemic production of plant volatiles that attract predators of the herbivore—extraction of endogenous elicitor. J Chem Ecol 19(3):581–599

    Article  CAS  Google Scholar 

  18. Doughty KJ, Blight MM, Bock CH, Fieldsend JK, Pickett JA (1996) Release of alkenyl isothiocyanates and other volatiles from Brassica rapa seedlings during infection by Alternaria brassicae. Phytochemistry 43(2):371–374

    Article  CAS  Google Scholar 

  19. Edwards LJ, Siddball JB, Dunham LL, Uden P, Kislow CJ (1973) Trans-beta-farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 241(5385):126–127

    Article  CAS  Google Scholar 

  20. Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). P Roy Soc B Biol Sci 269(1490):455–460

    Article  CAS  Google Scholar 

  21. Farmer EE (2001) Surface-to-air signals. Nature 411(6839):854–856

    PubMed  Article  CAS  Google Scholar 

  22. Farmer EE, Ryan CA (1990) Interplant communication—airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. P Natl Acad Sci USA 87:7713–7716

    Article  CAS  Google Scholar 

  23. Francis F, Vandermoten S, Verheggen F, Lognay G, Haubruge E (2005) Is the (E)-b-Farnesene only volatile terpenoid in aphids? J Appl Entomol 129(1):6–11

    Article  CAS  Google Scholar 

  24. Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  25. Hardie J, Pickett JA, Pow EM, Smiley DWM (1999) Aphids. In: Hardie J, Minks AK (eds) Pheromones of non-Lepidopteran insects associated with agricultural plants. CAB International, Wallingford, pp 227–250

    Google Scholar 

  26. Isaacs R, Hardie J, Hick AJ, Pye BJ, Smart LE, Wadhams LJ, Woodcock CM (1993) Behavioral-responses of Aphis fabae to isothiocyanates in the laboratory and field. Pestic Sci 39(4):349–355

    Article  CAS  Google Scholar 

  27. Jiménez-Martínez ES, Bosque-Pérez NA, Berger PH, Zemetra RS, Ding H, Eigenbrode SD (2004) Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat. Environ Entomol 33(5):1207–1216

    Article  Google Scholar 

  28. Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterization of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5

    PubMed  Article  CAS  Google Scholar 

  29. Kan W, Zhang F, Zhang ZN (2002) Behavior-modulating plant volatile chemical for aphids. Chin Sci Bull 47(2):115–117

    Google Scholar 

  30. Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348

    PubMed  Article  Google Scholar 

  31. Leroy PD, Schillings T, Farmakidis J, Heuskin S, Lognay G, Verheggen FJ, Brostaux Y, Haubruge E, Francis F (2012) Testing semiochemicals from aphid, plant and conspecific: attraction of Harmonia axyridis. Insect Sci 19:372–382

    Article  CAS  Google Scholar 

  32. MacGibbon DB, Beuzenberg EJ (1978) Location of glucosinolase in Brevicoryne brassicae and Lipaphis erysimi (Aphididae). N Z J Sci 21:389–392

    CAS  Google Scholar 

  33. Mauck KE, De Moraes CM, Mescher MC (2010) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. P Natl Acad Sci USA 107(8):3600–3605

    Article  CAS  Google Scholar 

  34. Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams L, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17(6):1231–1242

    Article  CAS  Google Scholar 

  35. Paré PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nature 385(6611):30–31

    Article  Google Scholar 

  36. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    PubMed  Article  Google Scholar 

  37. Peñaflor MFGV, Erb M, Miranda LA, Werneburg AG, Bento JMS (2011) Herbivore-induced plant volatiles can serve as host location cues for a generalist and a specialist egg parasitoid. J Chem Ecol 37(12):1304–1313

    PubMed  Article  Google Scholar 

  38. Pettersson J, Quiroz A, Stephansson D, Niemeyer HM (1995) Odor communication of Rhopalosiphum padi on grasses. Entomol Exp Appl 76(3):325–328

    Article  Google Scholar 

  39. Pickett JA, Glinwood RT (2007) Chemical ecology. In: van Emden H, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 235–260

    Chapter  Google Scholar 

  40. Pickett JA, Wadhams LJ, Woodcock CM (1992) The chemical ecology of aphids. Annu Rev Entomol 37:69–90

    Article  Google Scholar 

  41. Piesik D, Wenda-Piesik A, Kotwica K, Lyszczarz A, Delaney KJ (2011) Gastrophysa polygoni herbivory on Rumex confertus: single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds. J Plant Physiol 168(17):2134–2138

    PubMed  Article  CAS  Google Scholar 

  42. Powell G, Hardie J (2001) The chemical ecology of aphid host alternation: how do return migrants find the primary host plant? Appl Entomol Zool 36:259–267

    Article  Google Scholar 

  43. Röse USR, Tumlinson JH (2004) Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218(5):824–832

    PubMed  Article  Google Scholar 

  44. Runyon J, Mescher M, De Moraes C (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    PubMed  Article  CAS  Google Scholar 

  45. Schwartzberg EG, Böröczky K, Tumlinson JH (2011) Pea Aphids, Acyrthosiphon Pisum, suppress induced plant volatiles in broad bean, Vicia Faba. J Chem Ecol 37(10):1055–1062

    PubMed  Article  CAS  Google Scholar 

  46. Stout MJ, Workman KV, Bostock RM, Duffey SS (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81

    Article  Google Scholar 

  47. Szafranek B, Malinski E, Szafranek J (1998) The sesquiterpene composition of leaf cuticular neutral lipids of ten polish varieties of Solanum tuberosum. J Sci Food Agric 76(4):588–592

    Article  CAS  Google Scholar 

  48. Tollsten L, Bergstrom G (1988) Headspace volatiles of whole plants and macerated plant-parts of Brassica and Sinapis. Phytochemistry 27(12):4013–4018

    Article  CAS  Google Scholar 

  49. Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induce plant odour to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427

    PubMed  Article  Google Scholar 

  50. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250(4985):1251–1253

    PubMed  Article  CAS  Google Scholar 

  51. Turlings TCJ, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17(11):2235–2251

    Article  CAS  Google Scholar 

  52. Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen F (2012) Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42(3):155–163

    PubMed  Article  CAS  Google Scholar 

  53. Vaughn SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:2107–2116

    Article  CAS  Google Scholar 

  54. Verheggen FJ, Fagel Q, Heuskin S, Lognay G, Francis F, Haubruge E (2007) Electrophysiological and behavioral responses of the multicolored Asian Lady Beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. J Chem Ecol 33:2148–2155

    PubMed  Article  CAS  Google Scholar 

  55. Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E (2008) Aphid and plant secondary metabolites induce oviposition in an aphidophagous hoverfly. J Chem Ecol 34:301–307

    PubMed  Article  CAS  Google Scholar 

  56. Verheggen FJ, Haubruge E, De Moraes CM, Mescher MC (2009) Social environment influences aphid production of alarm pheromone. Behav Ecol 20:283–288

    Article  Google Scholar 

  57. Verheggen FJ, Haubruge E, Mescher MC (2010) Alarm pheromones—chemical signaling in response to danger. Vitam Horm 83(C):215–239

    Google Scholar 

  58. Vet LEM, Lenteren JCV, Heymans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8:97–106

    Article  Google Scholar 

  59. von Mérey G, Veyrat N, Mahuku G, Valdez RL, Turlings TCJ, D’Alessandro M (2011) Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry 72(14–15):1838–1847

    Article  Google Scholar 

  60. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  61. Weber G, Oswald S, Zöllner U (1986) Suitability of rape cultivars with different levels of glucosinolate content for Brevicoryne brassicae and Myzus persicae. Z. Pflanzenkr. Pflanzenschultz 93:113–124

    CAS  Google Scholar 

  62. Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34(9):1153–1161

    PubMed  Article  CAS  Google Scholar 

  63. Werner BJ, Mowry TM, Bosque-Pérez NA, Ding H, Eigenbrode SD (2009) Changes in green peach aphid responses to Potato leafroll virus-induced volatiles emitted during disease progression. Environ Entomol 38(5):1429–1438

    PubMed  Article  CAS  Google Scholar 

  64. Wientjens WH, Lakwijk AC, Vanderma T (1973) Alarm pheromone of grain aphids. Experientia 29:658–660

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to François J. Verheggen.

Additional information

Handling editor: Robert Glinwood.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verheggen, F.J., Haubruge, E., De Moraes, C.M. et al. Aphid responses to volatile cues from turnip plants (Brassica rapa) infested with phloem-feeding and chewing herbivores. Arthropod-Plant Interactions 7, 567–577 (2013). https://doi.org/10.1007/s11829-013-9272-1

Download citation

Keywords

  • Herbivore-induced plant volatiles
  • Plant defenses
  • Brassica rapa
  • Myzus persicae
  • Heliothis virescens