Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines

Abstract

Rhopalosiphum padi, Schizaphis graminum, and Sitobion avenae are three of the most destructive aphid species of wheat (Triticum aestivum L.). They can significantly reduce wheat yields directly by feeding and indirectly by transmitting viruses. This study aimed to search for resistance to these aphid species among lines derived from different rye (Secale cereale) origins and from Aegilops speltoides, all in the genetic background of the wheat cultivar Pavon F76. Resistance was quantified as aphid weight (R. padi, S. avenae, and S. graminum) and the number of aphids and percentage of infested leaf area exhibiting chlorosis (S. graminum). The most resistant genotypes reduced R. padi and S. avenae weight by 24.2 and 34.3 %, respectively, at the seedling stage, compared with Pavon F76 control plants. Strong S. graminum resistance was found only in A. speltoides-derived lines, the most resistant of which (7A.7S-L5) sustained just 3 % chlorosis and reduced S. graminum colony weight by 67.7 %. One line carrying the 1AL.1RSam wheat–rye translocation from Amigo wheat (originally from Insave rye) reduced S. avenae weight by 23.2 and 21.8 % in seedling and adult plants, respectively. Single genotypes carrying the complete 1R chromosome or the 1RS chromosome arm derived from E12165 wheat and Presto triticale proved to be resistant to both R. padi and S. avenae at the seedling stage. Further research should be conducted to unravel the genetic basis of resistance to these aphids in 1RS genotypes. The sources of resistance identified here may be useful for incorporating multiple aphid species resistance in wheat breeding programs, particularly for R. padi and S. avenae, to which no resistant wheats have been bred.

This is a preview of subscription content, log in to check access.

References

  1. Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296

    Google Scholar 

  2. Blackman RL, Eastop VF (2007) Taxonomic issues. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Oxfordshire, UK, pp 1–29

  3. Brunell MS, Lukaszewski AJ, Whitkus R (1999) Development of arm specific RAPD markers for rye chromosome 2R in wheat. Crop Sci 39(6):1702–1706

    Article  CAS  Google Scholar 

  4. Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. J Econ Entomol 99(3):959–965

    PubMed  Article  Google Scholar 

  5. Caillaud CM, Dedryver CA, DiPietro JP, Simon JC, Fima F, Chaubet B (1995) Clonal variability in the response of Sitobion avenae (Homoptera: Aphididae) to resistant and susceptible wheat. Bull Entomol Res 85(2):189–195

    Article  Google Scholar 

  6. Castaneda LE, Figueroa CC, Nespolo RF (2010) Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J Evol Biol 23(11):2474–2483. doi:10.1111/j.1420-9101.2010.02112.x

    PubMed  Article  CAS  Google Scholar 

  7. Copaja SV, Nicol D, Wratten SD (1999) Accumulation of hydroxamic acids during wheat germination. Phytochemistry 50(1):17–24. doi:10.1016/s0031-9422(98)00479-8

    Article  CAS  Google Scholar 

  8. Di Pietro JP, Caillaud CM, Chaubet B, Pierre JS, Trottet M (1998) Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca : Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed 117(5):407–412. doi:10.1111/j.1439-0523.1998.tb01964.x

    Article  Google Scholar 

  9. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38(6):1655–1660

    Article  CAS  Google Scholar 

  10. Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Macedo TB (2008) Physiological responses of wheat and barley to Russian wheat aphid, Diuraphis noxia (Mordvilko) and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Arthropod Plant Interact 2(4):227–235. doi:10.1007/s11829-008-9048-1

  11. Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet 81(3):381–389. doi:10.1007/bf00228680

    Google Scholar 

  12. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87

    Article  Google Scholar 

  13. Givovich A, Niemeyer HM (1994) Effect of hydroxamic acids on feeding behaviour and performance of cereal aphids (Hemiptera: Aphididae) on wheat. Eur J Entomol 91:371–374

    CAS  Google Scholar 

  14. Haley SD, Peairs FB, Walker CB, Rudolph JB, Randolph TL (2004) Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Sci 44(5):1589–1592

    Article  Google Scholar 

  15. Hansen LM (2006) Effect of 6-methoxybenzoxazolin-2-one (MBOA) on the reproduction rate of the grain aphid (Sitobion avenae F.). J Agric Food Chem 54(4):1031–1035. doi:10.1021/jf0509005

    PubMed  Article  CAS  Google Scholar 

  16. Hesler LS (2005) Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in three triticale accessions. J Econ Entomol 98(2):603–610

    PubMed  Article  Google Scholar 

  17. Hesler LS, Tharp CI (2005) Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 143(1–2):153–160. doi:10.1007/s10681-005-3060-7

    Article  Google Scholar 

  18. Hesler LS, Haley SD, Nkongolo KK, Peairs FB (2007) Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in triticale and triticale-derived wheat lines resistant to Diuraphis noxia (Homoptera: Aphididae). J Entomol Sci 42(2):217–227

    Google Scholar 

  19. Hu X, Zhao H, Heimbach U, Thieme T, Li J, Zhang Y, Liu B, Li D, Hu Z (2004) Study on cereal aphid resistance on three winter wheat cultivars introduced into China. Acta Bot Boreali Occidentalia Sinica 24(7):1221–1226

    Google Scholar 

  20. Kieckhefer RW, Gellner JL (1992) Yield losses in winter wheat caused by low-density cereal aphid populations. Agron J 84(2):180–183

    Article  Google Scholar 

  21. Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44(4):1254–1258

    Article  Google Scholar 

  22. Kumlay AM, Baezinger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, Wesenberg DM (2003) Understanding the effect of rye chromatin in bread wheat. Crop Sci 43(5):1643–1651

    Article  Google Scholar 

  23. Leszczynski B, Dixon AFG (1992) Resistance of cereals to aphids - the interaction between hydroxamic acids and glutathione S-transferases in the grain aphid Sitobion avenae (F) (Hom., Aphididae). J Appl Entomol 113(1):61–67

    Article  Google Scholar 

  24. Liu X, Yang X, Wang C, Wang Y, Zhang H, Ji W (2012) Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273. Theor Appl Genet 124(2):1–7

    Article  Google Scholar 

  25. Lowe H (1981) Resistance and susceptibility to colour forms of the aphid Sitobion avenae in spring and winter wheats (Triticum aestivum). Ann Appl Biol 99(1):87–98

    Article  Google Scholar 

  26. Lu H, Rudd JC, Burd JD, Weng Y (2010) Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed 129(5):472–476

    CAS  Google Scholar 

  27. Lukaszewski AJ (1993) Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkaz’ origin. Genome 36(5):821–824

    PubMed  Article  CAS  Google Scholar 

  28. Lukaszewski AJ (1995) Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet 90(5):714–719

    Article  Google Scholar 

  29. Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94(3):257–261. doi:10.1023/a:1002916323085

    Article  Google Scholar 

  30. Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40(1):216–225

    Article  CAS  Google Scholar 

  31. Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci 46(5):2183–2194. doi:10.2135/cropsci2006.03.0135

    Article  CAS  Google Scholar 

  32. Lukaszewski AJ (2008) Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 117(6):569–578. doi:10.1007/s00412-008-0174-4

    PubMed  Article  Google Scholar 

  33. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47(1):36–45. doi:10.1139/g03-089

    PubMed  Article  CAS  Google Scholar 

  34. Migui SM, Lamb RJ (2003) Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull Entomol Res 93(4):323–333. doi:10.1079/ber2003246

    PubMed  Article  Google Scholar 

  35. Migui SM, Lamb RJ (2004) Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull Entomol Res 94(1):35–46. doi:10.1079/ber2003278

    PubMed  Article  CAS  Google Scholar 

  36. Nicol D, Wratten SD (1997) The effect of hydoroxamic acid concentration at late growth stages of wheat on the performance of the aphid Sitobion avenae. Ann Appl Biol 130(3):387–396. doi:10.1111/j.1744-7348.1997.tb07669.x

    Article  CAS  Google Scholar 

  37. Nicol D, Copaja SV, Wratten SD, Niemeyer HM (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann Appl Biol 121(1):11–18. doi:10.1111/j.1744-7348.1992.tb03982.x

    Article  CAS  Google Scholar 

  38. Niemeyer HM, Jerez JM (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79(1):10–14

    Article  CAS  Google Scholar 

  39. Nomura TN, Ishihara AI, Imaishi HI, Endo TE, Ohkawa HO, Iwamura HI (2002) Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol Genet Genomics 267(2):210–217. doi:10.1007/s00438-002-0653-x

    PubMed  Article  CAS  Google Scholar 

  40. Nomura T, Ishihara A, Imaishi H, Ohkawa H, Endo TR, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217(5):776–782. doi:10.1007/s00425-003-1040-5

    PubMed  Article  CAS  Google Scholar 

  41. Porter DR, Webster JA, Burton RL, Puterka GJ, Smith EL (1991) New sources of resistance to greenbug in wheat. Crop Sci 31(6):1502–1504

    Article  Google Scholar 

  42. Porter DR, Burd JD, Shufran KA, Webster JA, Teetes GL (1997) Greenbug (Homoptera: Aphididae) biotypes: selected by resistant cultivars or preadapted opportunists? J Econ Entomol 90(5):1055–1065

    Google Scholar 

  43. Porter DR, Harris MO, Hesler LS, Puterka GJ (2009) Insects which challenge global wheat production. In: Carver BF (ed) Wheat science and trade. Wiley-Blackwell, Iowa, pp 189–201

    Google Scholar 

  44. Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100(1–3):323–340

    Article  Google Scholar 

  45. Riedell WE, Kieckhefer RW, Langham MAC, Hesler LS (2003) Root and shoot responses to bird cherry-oat aphids and barley yellow dwarf virus in spring wheat. Crop Sci 43(4):1380–1386

    Article  Google Scholar 

  46. SAS Institute Inc. (2009) SAS/STAT® 9.2 User’s guide. SAS Institute Inc, Cary, NC

  47. Sebesta E, Wood E (1978) Transfer of greenbug resistance from rye to wheat with X-rays. Agron Abstr 70:61–62

    Google Scholar 

  48. Skovmand B, Villareal RL, van Ginkel M, Rajaram S, Ortiz-Ferrara G (1997) Semidwarf bread wheats: names, parentages, pedigrees and origins. CIMMYT, Mexico, DF

    Google Scholar 

  49. Smith CM, Belay T, Stauffer C, Stary P, Kubeckova I, Starkey S (2004a) Identification of Russian wheat aphid (Homoptera: Aphididae) populations virulent to the Dn4 resistance gene. J Econ Entomol 97(3):1112–1117. doi:10.1603/0022-0493(2004)097

    PubMed  Article  CAS  Google Scholar 

  50. Smith CM, Havlickova H, Starkey S, Gill B, Holubec V (2004b) Identification of Aegilops germplasm with multiple aphid resistance. Euphytica 135(3):265–273

    Article  Google Scholar 

  51. Thackray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann Appl Biol 116(3):573–582. doi:10.1111/j.1744-7348.1990.tb06640.x

    Article  CAS  Google Scholar 

  52. Tyler JM, Webster JA, Smith EL (1985) Biotype E greenbug resistance in WSMV resistant wheat germplasm lines. Crop Sci 25(4):686–688

    Article  Google Scholar 

  53. Tyler JM, Webster JA, Merkle OG (1987) Designations for genes in wheat germplasm conferring greenbug resistance. Crop Sci 27(3):526–527

    Article  Google Scholar 

  54. Voss TS, Kieckhefer RW, Fuller BW, McLeod MJ, Beck DA (1997) Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J Econ Entomol 90(5):1346–1350

    Google Scholar 

  55. Watt A (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Ann Appl Biol 91(2):147–157

    Article  Google Scholar 

  56. Weiland AA, Peairs FB, Randolph TL, Rudolph JB, Haley SD, Puterka GJ (2008) Biotypic diversity in Colorado Russian wheat aphid (Hemiptera: Aphididae) populations. J Econ Entomol 101(2):569–574. doi:10.1603/0022-0493(2008)101

    PubMed  Article  Google Scholar 

  57. Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops taushii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469

    PubMed  Article  CAS  Google Scholar 

  58. Xu ZH, Chen JL, Cheng DF, Sun JR, Liu Y, Francis F (2011) Discovery of English grain aphid (Hemiptera: Aphididae) biotypes in China. J Econ Entomol 104(3):1080–1086

    PubMed  Article  Google Scholar 

  59. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Monsanto’s Beachell-Borlaug International Scholars Program for financing this research project. The Swedish Foundation for Strategic Environmental Research (Mistra) through the PlantComMistra program is acknowledged for support. We would also like to thank for technical support provided by Dr. Vehbo Hot (SLU) and Ms. Lina Aguirre (KSU) and to Dr. Jan-Eric Englund (SLU) for his valuable advice on the statistical analyses. Emma Quilligan provided editing assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonardo A. Crespo-Herrera.

Additional information

Handling Editor: John F. Tooker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crespo-Herrera, L.A., Smith, C.M., Singh, R.P. et al. Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines. Arthropod-Plant Interactions 7, 535–545 (2013). https://doi.org/10.1007/s11829-013-9267-y

Download citation

Keywords

  • Rhopalosiphum padi
  • Schizaphis graminum
  • Sitobion avenae
  • Triticum aestivum
  • Secale cereale
  • Aegilops speltoides