Advertisement

Arthropod-Plant Interactions

, Volume 7, Issue 5, pp 535–545 | Cite as

Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines

  • Leonardo A. Crespo-Herrera
  • C. Michael Smith
  • Ravi P. Singh
  • Inger Åhman
Original Paper

Abstract

Rhopalosiphum padi, Schizaphis graminum, and Sitobion avenae are three of the most destructive aphid species of wheat (Triticum aestivum L.). They can significantly reduce wheat yields directly by feeding and indirectly by transmitting viruses. This study aimed to search for resistance to these aphid species among lines derived from different rye (Secale cereale) origins and from Aegilops speltoides, all in the genetic background of the wheat cultivar Pavon F76. Resistance was quantified as aphid weight (R. padi, S. avenae, and S. graminum) and the number of aphids and percentage of infested leaf area exhibiting chlorosis (S. graminum). The most resistant genotypes reduced R. padi and S. avenae weight by 24.2 and 34.3 %, respectively, at the seedling stage, compared with Pavon F76 control plants. Strong S. graminum resistance was found only in A. speltoides-derived lines, the most resistant of which (7A.7S-L5) sustained just 3 % chlorosis and reduced S. graminum colony weight by 67.7 %. One line carrying the 1AL.1RSam wheat–rye translocation from Amigo wheat (originally from Insave rye) reduced S. avenae weight by 23.2 and 21.8 % in seedling and adult plants, respectively. Single genotypes carrying the complete 1R chromosome or the 1RS chromosome arm derived from E12165 wheat and Presto triticale proved to be resistant to both R. padi and S. avenae at the seedling stage. Further research should be conducted to unravel the genetic basis of resistance to these aphids in 1RS genotypes. The sources of resistance identified here may be useful for incorporating multiple aphid species resistance in wheat breeding programs, particularly for R. padi and S. avenae, to which no resistant wheats have been bred.

Keywords

Rhopalosiphum padi Schizaphis graminum Sitobion avenae Triticum aestivum Secale cereale Aegilops speltoides 

Notes

Acknowledgments

We thank the Monsanto’s Beachell-Borlaug International Scholars Program for financing this research project. The Swedish Foundation for Strategic Environmental Research (Mistra) through the PlantComMistra program is acknowledged for support. We would also like to thank for technical support provided by Dr. Vehbo Hot (SLU) and Ms. Lina Aguirre (KSU) and to Dr. Jan-Eric Englund (SLU) for his valuable advice on the statistical analyses. Emma Quilligan provided editing assistance.

References

  1. Berzonsky WA, Ding H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296Google Scholar
  2. Blackman RL, Eastop VF (2007) Taxonomic issues. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Oxfordshire, UK, pp 1–29Google Scholar
  3. Brunell MS, Lukaszewski AJ, Whitkus R (1999) Development of arm specific RAPD markers for rye chromosome 2R in wheat. Crop Sci 39(6):1702–1706CrossRefGoogle Scholar
  4. Burd JD, Porter DR (2006) Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. J Econ Entomol 99(3):959–965PubMedCrossRefGoogle Scholar
  5. Caillaud CM, Dedryver CA, DiPietro JP, Simon JC, Fima F, Chaubet B (1995) Clonal variability in the response of Sitobion avenae (Homoptera: Aphididae) to resistant and susceptible wheat. Bull Entomol Res 85(2):189–195CrossRefGoogle Scholar
  6. Castaneda LE, Figueroa CC, Nespolo RF (2010) Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J Evol Biol 23(11):2474–2483. doi: 10.1111/j.1420-9101.2010.02112.x PubMedCrossRefGoogle Scholar
  7. Copaja SV, Nicol D, Wratten SD (1999) Accumulation of hydroxamic acids during wheat germination. Phytochemistry 50(1):17–24. doi: 10.1016/s0031-9422(98)00479-8 CrossRefGoogle Scholar
  8. Di Pietro JP, Caillaud CM, Chaubet B, Pierre JS, Trottet M (1998) Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca : Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed 117(5):407–412. doi: 10.1111/j.1439-0523.1998.tb01964.x CrossRefGoogle Scholar
  9. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38(6):1655–1660CrossRefGoogle Scholar
  10. Franzen LD, Gutsche AR, Heng-Moss TM, Higley LG, Macedo TB (2008) Physiological responses of wheat and barley to Russian wheat aphid, Diuraphis noxia (Mordvilko) and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Arthropod Plant Interact 2(4):227–235. doi: 10.1007/s11829-008-9048-1
  11. Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet 81(3):381–389. doi: 10.1007/bf00228680 Google Scholar
  12. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87CrossRefGoogle Scholar
  13. Givovich A, Niemeyer HM (1994) Effect of hydroxamic acids on feeding behaviour and performance of cereal aphids (Hemiptera: Aphididae) on wheat. Eur J Entomol 91:371–374Google Scholar
  14. Haley SD, Peairs FB, Walker CB, Rudolph JB, Randolph TL (2004) Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Sci 44(5):1589–1592CrossRefGoogle Scholar
  15. Hansen LM (2006) Effect of 6-methoxybenzoxazolin-2-one (MBOA) on the reproduction rate of the grain aphid (Sitobion avenae F.). J Agric Food Chem 54(4):1031–1035. doi: 10.1021/jf0509005 PubMedCrossRefGoogle Scholar
  16. Hesler LS (2005) Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in three triticale accessions. J Econ Entomol 98(2):603–610PubMedCrossRefGoogle Scholar
  17. Hesler LS, Tharp CI (2005) Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions. Euphytica 143(1–2):153–160. doi: 10.1007/s10681-005-3060-7 CrossRefGoogle Scholar
  18. Hesler LS, Haley SD, Nkongolo KK, Peairs FB (2007) Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in triticale and triticale-derived wheat lines resistant to Diuraphis noxia (Homoptera: Aphididae). J Entomol Sci 42(2):217–227Google Scholar
  19. Hu X, Zhao H, Heimbach U, Thieme T, Li J, Zhang Y, Liu B, Li D, Hu Z (2004) Study on cereal aphid resistance on three winter wheat cultivars introduced into China. Acta Bot Boreali Occidentalia Sinica 24(7):1221–1226Google Scholar
  20. Kieckhefer RW, Gellner JL (1992) Yield losses in winter wheat caused by low-density cereal aphid populations. Agron J 84(2):180–183CrossRefGoogle Scholar
  21. Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44(4):1254–1258CrossRefGoogle Scholar
  22. Kumlay AM, Baezinger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, Wesenberg DM (2003) Understanding the effect of rye chromatin in bread wheat. Crop Sci 43(5):1643–1651CrossRefGoogle Scholar
  23. Leszczynski B, Dixon AFG (1992) Resistance of cereals to aphids - the interaction between hydroxamic acids and glutathione S-transferases in the grain aphid Sitobion avenae (F) (Hom., Aphididae). J Appl Entomol 113(1):61–67CrossRefGoogle Scholar
  24. Liu X, Yang X, Wang C, Wang Y, Zhang H, Ji W (2012) Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273. Theor Appl Genet 124(2):1–7CrossRefGoogle Scholar
  25. Lowe H (1981) Resistance and susceptibility to colour forms of the aphid Sitobion avenae in spring and winter wheats (Triticum aestivum). Ann Appl Biol 99(1):87–98CrossRefGoogle Scholar
  26. Lu H, Rudd JC, Burd JD, Weng Y (2010) Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed 129(5):472–476Google Scholar
  27. Lukaszewski AJ (1993) Reconstruction in wheat of complete chromosomes 1B and 1R from the 1RS.1BL translocation of ‘Kavkaz’ origin. Genome 36(5):821–824PubMedCrossRefGoogle Scholar
  28. Lukaszewski AJ (1995) Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet 90(5):714–719CrossRefGoogle Scholar
  29. Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94(3):257–261. doi: 10.1023/a:1002916323085 CrossRefGoogle Scholar
  30. Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40(1):216–225CrossRefGoogle Scholar
  31. Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci 46(5):2183–2194. doi: 10.2135/cropsci2006.03.0135 CrossRefGoogle Scholar
  32. Lukaszewski AJ (2008) Unexpected behavior of an inverted rye chromosome arm in wheat. Chromosoma 117(6):569–578. doi: 10.1007/s00412-008-0174-4 PubMedCrossRefGoogle Scholar
  33. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47(1):36–45. doi: 10.1139/g03-089 PubMedCrossRefGoogle Scholar
  34. Migui SM, Lamb RJ (2003) Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull Entomol Res 93(4):323–333. doi: 10.1079/ber2003246 PubMedCrossRefGoogle Scholar
  35. Migui SM, Lamb RJ (2004) Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull Entomol Res 94(1):35–46. doi: 10.1079/ber2003278 PubMedCrossRefGoogle Scholar
  36. Nicol D, Wratten SD (1997) The effect of hydoroxamic acid concentration at late growth stages of wheat on the performance of the aphid Sitobion avenae. Ann Appl Biol 130(3):387–396. doi: 10.1111/j.1744-7348.1997.tb07669.x CrossRefGoogle Scholar
  37. Nicol D, Copaja SV, Wratten SD, Niemeyer HM (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann Appl Biol 121(1):11–18. doi: 10.1111/j.1744-7348.1992.tb03982.x CrossRefGoogle Scholar
  38. Niemeyer HM, Jerez JM (1997) Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity 79(1):10–14CrossRefGoogle Scholar
  39. Nomura TN, Ishihara AI, Imaishi HI, Endo TE, Ohkawa HO, Iwamura HI (2002) Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol Genet Genomics 267(2):210–217. doi: 10.1007/s00438-002-0653-x PubMedCrossRefGoogle Scholar
  40. Nomura T, Ishihara A, Imaishi H, Ohkawa H, Endo TR, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217(5):776–782. doi: 10.1007/s00425-003-1040-5 PubMedCrossRefGoogle Scholar
  41. Porter DR, Webster JA, Burton RL, Puterka GJ, Smith EL (1991) New sources of resistance to greenbug in wheat. Crop Sci 31(6):1502–1504CrossRefGoogle Scholar
  42. Porter DR, Burd JD, Shufran KA, Webster JA, Teetes GL (1997) Greenbug (Homoptera: Aphididae) biotypes: selected by resistant cultivars or preadapted opportunists? J Econ Entomol 90(5):1055–1065Google Scholar
  43. Porter DR, Harris MO, Hesler LS, Puterka GJ (2009) Insects which challenge global wheat production. In: Carver BF (ed) Wheat science and trade. Wiley-Blackwell, Iowa, pp 189–201CrossRefGoogle Scholar
  44. Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100(1–3):323–340CrossRefGoogle Scholar
  45. Riedell WE, Kieckhefer RW, Langham MAC, Hesler LS (2003) Root and shoot responses to bird cherry-oat aphids and barley yellow dwarf virus in spring wheat. Crop Sci 43(4):1380–1386CrossRefGoogle Scholar
  46. SAS Institute Inc. (2009) SAS/STAT® 9.2 User’s guide. SAS Institute Inc, Cary, NCGoogle Scholar
  47. Sebesta E, Wood E (1978) Transfer of greenbug resistance from rye to wheat with X-rays. Agron Abstr 70:61–62Google Scholar
  48. Skovmand B, Villareal RL, van Ginkel M, Rajaram S, Ortiz-Ferrara G (1997) Semidwarf bread wheats: names, parentages, pedigrees and origins. CIMMYT, Mexico, DFGoogle Scholar
  49. Smith CM, Belay T, Stauffer C, Stary P, Kubeckova I, Starkey S (2004a) Identification of Russian wheat aphid (Homoptera: Aphididae) populations virulent to the Dn4 resistance gene. J Econ Entomol 97(3):1112–1117. doi: 10.1603/0022-0493(2004)097 PubMedCrossRefGoogle Scholar
  50. Smith CM, Havlickova H, Starkey S, Gill B, Holubec V (2004b) Identification of Aegilops germplasm with multiple aphid resistance. Euphytica 135(3):265–273CrossRefGoogle Scholar
  51. Thackray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann Appl Biol 116(3):573–582. doi: 10.1111/j.1744-7348.1990.tb06640.x CrossRefGoogle Scholar
  52. Tyler JM, Webster JA, Smith EL (1985) Biotype E greenbug resistance in WSMV resistant wheat germplasm lines. Crop Sci 25(4):686–688CrossRefGoogle Scholar
  53. Tyler JM, Webster JA, Merkle OG (1987) Designations for genes in wheat germplasm conferring greenbug resistance. Crop Sci 27(3):526–527CrossRefGoogle Scholar
  54. Voss TS, Kieckhefer RW, Fuller BW, McLeod MJ, Beck DA (1997) Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J Econ Entomol 90(5):1346–1350Google Scholar
  55. Watt A (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Ann Appl Biol 91(2):147–157CrossRefGoogle Scholar
  56. Weiland AA, Peairs FB, Randolph TL, Rudolph JB, Haley SD, Puterka GJ (2008) Biotypic diversity in Colorado Russian wheat aphid (Hemiptera: Aphididae) populations. J Econ Entomol 101(2):569–574. doi: 10.1603/0022-0493(2008)101 PubMedCrossRefGoogle Scholar
  57. Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops taushii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469PubMedCrossRefGoogle Scholar
  58. Xu ZH, Chen JL, Cheng DF, Sun JR, Liu Y, Francis F (2011) Discovery of English grain aphid (Hemiptera: Aphididae) biotypes in China. J Econ Entomol 104(3):1080–1086PubMedCrossRefGoogle Scholar
  59. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Leonardo A. Crespo-Herrera
    • 1
  • C. Michael Smith
    • 2
  • Ravi P. Singh
    • 3
  • Inger Åhman
    • 1
  1. 1.Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
  2. 2.Department of EntomologyKansas State UniversityManhattanUSA
  3. 3.International Maize and Wheat Improvement Center (CIMMYT)Mexico, DFMexico

Personalised recommendations