Skip to main content

Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars

Abstract

Codling moths, Cydia pomonella L. (Lepidoptera, Tortricidae), of the first generation deposit eggs on apple leaves in the vicinity of small fruits. The choice of the suitable oviposition sites and proper fixation of eggs are expected to be crucial factors for the survival of the offspring. In this study, we investigated egg adhesion of the codling moth to leaf surfaces of different cultivars of the domestic apple, Malus domestica Borkh., by measuring the pull-off force required to detach the eggs from leaves. Since surface features may influence insect egg adhesion, morphological and physicochemical properties (wettability, free surface energy) of these leaf surfaces were analyzed. Furthermore, eggs and their adhesives covering leaf surfaces were visualized. Eggs on the smooth upper leaf surfaces of all tested cultivars required significantly similar pull-off forces to be detached, at a total average of 6.0 mN. Up to 2–3 times stronger pull-off forces had to be applied to detach eggs from trichome-covered lower leaves, and these forces differed significantly between cultivars. The role of leaf surface properties is discussed in the context of egg adhesion, oviposition site choice, female attachment, as well as neonate locomotion speed and survival. The obtained results shed light on the susceptibility of various apple cultivars and leaf surfaces to the infestation of apple trees by first-generation codling moths.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aghdam HR, Fathipour Y, Radjabi G, Rezapanah M (2009) Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ Entomol 38:885–895

    PubMed  Article  Google Scholar 

  2. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2009) Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. J Insect Physiol 55:1029–1038

    PubMed  Article  CAS  Google Scholar 

  3. Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2010) Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J Insect Physiol 56:1966–1972

    PubMed  Article  CAS  Google Scholar 

  4. Amornsak W, Noda T, Yamashita O (1992) Accumulation of glue proteins in the developing colleterial glands of the silkworm, Bombyx mori. J Seric Sci Jpn 61:123–130

    CAS  Google Scholar 

  5. Barnes MM (1991) Codling moth occurrence, host race formation, and damage. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 313–327

    Google Scholar 

  6. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  7. Bathon H, Singh P, Clare GK (1991) Rearing methods. In: van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier, Amsterdam, pp 283–293

    Google Scholar 

  8. Beament JWL, Lal R (1957) Penetration through the egg-shell of Pieris brassicae (L.). Bull Entomol Res 48:109–125

    Article  CAS  Google Scholar 

  9. Beattie GA, Marcell LM (2002) Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant, Cell Environ 25:1–16

    Article  CAS  Google Scholar 

  10. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems from nature to technical and medical application. Springer, Wien, pp 111–152

    Google Scholar 

  11. Blomefield TL, Giliomee JH (2009) Development rates of the embryonic and immature stages of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), at constant and fluctuating temperatures. Afr Entomol 17:183–191

    Article  Google Scholar 

  12. Blomefield TL, Pringle KL, Sadie A (1997) Field observations on oviposition of codling moth, Cydia pomonella (Linnaeus) (Lepidoptera: Olethreutidae), in an unsprayed apple orchard in South Africa. Afr Entomol 5:319–336

    Google Scholar 

  13. Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143

    PubMed  Article  CAS  Google Scholar 

  14. Borchert DM, Stinner RE, Walgenbach JF, Kennedy GG (2004) Oriental fruit moth (Lepidoptera: Tortricidae) phenology and management with methoxyfenozide in North Carolina apples. J Econ Entomol 97:1353–1364

    PubMed  Article  CAS  Google Scholar 

  15. Borden AD (1931) Some field observations on codling moth behavior. J Econ Entomol 24:1137–1145

    Google Scholar 

  16. Burgess IF (2010) Do nit removal formulations and other treatments loosen head louse eggs and nits from hair? Med Vet Entomol 24:55–61

    PubMed  Article  CAS  Google Scholar 

  17. Burkhart CN, Stankiewicz BA, Pchalek I, Kruge MA, Burkhart CG (1999) Molecular composition of the louse sheath. J Parasitol 85:559–561

    PubMed  Article  CAS  Google Scholar 

  18. Busscher HJ, van Pelt AWJ, de Jong HP, Arends J (1984) The effect of the surface roughening of polymers on measured contact angle of liquids. Colloids Surf 9:319–331

    Article  CAS  Google Scholar 

  19. Cogley TP, Cogley MC (1989) Morphology of the eggs of the human bot fly, Dermatobia hominis (L. Jr.) (Diptera: Cuterebridae) and their adherence to the transport carrier. Int J Insect Morphol Embryol 18:239–248

    Article  Google Scholar 

  20. Cogley TP, Anderson JR, Weintraub J (1981) Ultrastructure and function of the attachment organ of warble fly eggs (Diptera: Oestridae: Hypodermatinae). Int J Insect Morphol Embryol 10:7–18

    Article  Google Scholar 

  21. Crossley A, Fowler D (1986) The weathering of scots pine epicuticular wax in polluted and clean air. New Phytol 103:207–218

    Article  Google Scholar 

  22. Curtis CE, Tebbets JS, Clark JD (1990) Ovipositional behavior of the codling moth (Lepidoptera: Tortricidae) on stone fruits in the field and an improved oviposition cage for use in the laboratory. J Econ Entomol 83:131–134

    Google Scholar 

  23. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA 97:6218–6223

    PubMed  Article  CAS  Google Scholar 

  24. Erbil HY (1997) Surface tension of polymers. In: Birdi KS (ed) CRC Handbook of surfaces and colloid chemistry. CRC Press Inc., Boca Raton, pp 265–312

    Google Scholar 

  25. Fehrenbach H, Dittrich V, Zissler D (1987) Eggshell fine structure of three lepidopteran pests: Cydia pomonella (L.) (Tortricidae), Heliothis virescens (Fabr.), and Spodoptera littoralis (Boisd.) (Noctuidae). Int J Insect Morphol Embryol 16:201–219

    Article  Google Scholar 

  26. Fordyce JA, Nice CC (2003) Variation in butterfly egg adhesion: adaptation to local host plant senescence characteristics? Ecol Lett 6:23–27

    Article  Google Scholar 

  27. Forister ML, Fordyce JA, Nice CC, Compert Z, Shapiro AM (2006) Egg morphology varies among populations and habitats along a suture zone in the Lycaeides idas-melissa species complex (Lepidoptera: Lycaenidae). Ann Entomol Soc Am 99:933–937

    Article  Google Scholar 

  28. Gaino E, Rebora M (2001) Synthesis and function of the fibrous layers covering the eggs of Siphlonurus lacustris (Ephemeroptera, Siphlonuridae). Acta Zool 82:41–48

    Article  Google Scholar 

  29. Geier PW (1963) The life history of codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) in the Australian Capital Territory. Aust J Zool 11:323–367

    Article  Google Scholar 

  30. Gorb EV, Gorb SN (2006) Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae). Plant Biol 8:841–848

    PubMed  Article  CAS  Google Scholar 

  31. Gorb EV, Gorb SN (2009) Effect of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula. Entomol Exp Appl 130:222–228

    Article  Google Scholar 

  32. Gorb E, Kastner V, Peressadko A, Arzt E, Gaume L, Rowe N, Gorb S (2004) Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. J Exp Biol 207:2947–2963

    PubMed  Article  Google Scholar 

  33. Gorb E, Voigt D, Eigenbrode SD, Gorb S (2008) Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interact 2:247–259

    Article  Google Scholar 

  34. Graf B, Höpli HU, Höhn H (1992) Einfluss der Sortenwahl auf Schädlingsbefall und Raubmilbenbesatz im Apfelanbau. Schweiz Z Obst-Weinbau 128:618–622

    Google Scholar 

  35. Habenicht G (2002) Kleben: Grundlagen, Technologien, Anwendung, 4th edn. Springer, Berlin

    Google Scholar 

  36. Hagley EAC, Bronskill JF, Ford EJ (1980) Effect of the physical nature of leaf and fruit surfaces on oviposition by the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Can Entomol 112:503–510

    Article  Google Scholar 

  37. Hilker M, Meiners T (2002) Induction of plant responses towards oviposition and feeding of herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192

    Article  CAS  Google Scholar 

  38. Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    PubMed  Article  CAS  Google Scholar 

  39. Hinton HE (1981) Biology of insect eggs, vol I–III. Pergamon Press, Oxford

  40. Holloway PJ (1967) Studies on the wettability of leaf surfaces. PhD Thesis, University of London

  41. Hunsche M, Blanke MM, Noga G (2010) Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol 167:974–980

    PubMed  Article  CAS  Google Scholar 

  42. Israelachvili J (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  43. Jackson DM (1979) Codling moth egg distribution on unmanaged apple trees. Ann Entomol Soc Am 72:361–368

    Google Scholar 

  44. Jackson DM (1982) Searching behavior and survival of 1st-instar codling moths. Ann Entomol Soc Am 75:284–289

    Google Scholar 

  45. Jackson DM, Hardwood RE (1980) Survival potential of first instars of the codling moth in laboratory experiments. Ann Entomol Soc Am 73:160–163

    Google Scholar 

  46. Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood SR (eds) Insects and the plant surface. Edward Arnold Publishers, London, pp 23–64

    Google Scholar 

  47. Jin Y, Chen YL, Jiang Y, Xu M (2006) Proteome analysis of the silkworm (Bombyx mori L.) colleterial gland during different development stages. Arch Insect Biochem Physiol 61:42–50

    PubMed  Article  CAS  Google Scholar 

  48. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313

    Article  CAS  Google Scholar 

  49. Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963

    Article  CAS  Google Scholar 

  50. Li D, Huson MG, Graham LD (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch Insect Biochem Physiol 69:85–105

    PubMed  Article  CAS  Google Scholar 

  51. Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J, van den Boom T (1994) Phänologische Entwicklungsstadien des Kernobstes (Malus domstica Borkh. und Pyrus communis L.) des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria x ananassa Duch.). Nachrichtenbl Deut Pflanzenschutzd 46:141–153

    Google Scholar 

  52. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651

    PubMed  Article  Google Scholar 

  53. Nickles EP, Ghiradella H, Bakhru H, Haberl A (2002) Egg of the karner blue butterfly (Lycaeides melissa samuelis): morphology and elemental analysis. J Morphol 251:140–148

    PubMed  Article  CAS  Google Scholar 

  54. Olson WH (1977) Walnut varieties differ in susceptibility to codling moth damage. Calif Agric 31:14–15

    Google Scholar 

  55. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  56. Plourde DF, Goonewardene HF, Kwolek WF (1985) Pubescence as a factor in codling moth oviposition and fruit entry in five apple selections. HortScience 20:82–83

    Google Scholar 

  57. Ramaswamy SB (1988) Host finding by moths: sensory modalities and behaviours. J Insect Physiol 34:235–249

    Article  Google Scholar 

  58. Ramaswamy SB, Ma WK, Baker GT (1987) Sensory cues and receptors for oviposition by Heliothis virescens. Entomol Exp Appl 43:159–168

    Article  Google Scholar 

  59. Renwick JAA (1989) Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228

    Article  CAS  Google Scholar 

  60. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  61. Riley RC, Forgash AJ (1967) Drosophila melanogaster eggshell adhesive. J Insect Physiol 13:509–517

    PubMed  Article  CAS  Google Scholar 

  62. Scherge M, Gorb S (2001) Biological micro- and nano-tribology. Springer, Berlin

    Google Scholar 

  63. Singer MC, Ng D, Thomas CD (1988) Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985

    Article  Google Scholar 

  64. Subinprasert S, Svensson BW (1988) Effects of predation on clutch size and egg dispersion in the codling moth Laspeyresia pomonella. Ecol Entomol 13:87–94

    Article  Google Scholar 

  65. Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  66. Uehara K, Sakurai M (2002) Bonding strength of adhesives and surface roughness of joined parts. J Mater Process Technol 127:178–181

    Article  Google Scholar 

  67. Unruh TR, Knight AL, Upton J, Glenn DM, Puterka GJ (2000) Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. J Econ Entomol 93:737–743

    PubMed  Article  CAS  Google Scholar 

  68. Voigt D, Gorb S (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc Lond B 277:895–903

    Article  Google Scholar 

  69. Wood TG (1965) Field observations on flight and oviposition of codling moth (Carpocapsa pomonella L.) and mortality of eggs and first-instar larvae in an integrated control orchard. N Z J Agric Res 8:1043–1059

    Article  CAS  Google Scholar 

  70. Yago M, Mitamura T, Abe S, Hashimoto S (2001) Adhesive strength of glue-like substances from the colleterial glands of Antheraea yamamai and Rhodinia fugax. Int J Wild Silkmoths Silk 6:11–15

    Google Scholar 

  71. Yan F, Bengtsson M, Witzgall P (1999) Behavioral response of female codling moths, Cydia pomonella, to apple volatiles. J Chem Ecol 25:1343–1351

    Article  CAS  Google Scholar 

  72. Yokoyama VY, Miller GT, Hartsell PL (1990) Evaluation of a methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) on nectarine cultivars proposed for export to Japan. J Econ Entomol 83:466–471

    CAS  Google Scholar 

  73. Yoshida K, Nagata M (1997) Adhesive strength of the glue substances in the colleterial glands of the silkmoth, Bombyx mori. J Seric Sci Jpn 66:453–456

    Google Scholar 

Download references

Acknowledgments

The first author is grateful to Martin Hofmeister (Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany) for his valuable help in graphs and Fig. 1. This study was supported by a PhD grant from Syria to LAB and by the Federal Ministry of Education and Research, Germany (BMBF, project BIONA 01RB0802A) to SNG.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Loris Al Bitar.

Additional information

Handling Editor: Heikki Hokkanen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al Bitar, L., Gorb, S.N., Zebitz, C.P.W. et al. Egg adhesion of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars. Arthropod-Plant Interactions 6, 471–488 (2012). https://doi.org/10.1007/s11829-012-9198-z

Download citation

Keywords

  • Adhesion
  • Free surface energy
  • Insect egg
  • Malus domestica
  • Oviposition
  • Plant surface