Skip to main content

Advertisement

Log in

Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The size-advantage model (SAM) explains the temporal variation of energetic investment on reproductive structures (i.e. male and female gametes and reproductive organs) in long-lived hermaphroditic plants and animals. It proposes that an increase in the resources available to an organism induces a higher relative investment on the most energetically costly sexual structures. In plants, pollination interactions are known to play an important role in the evolution of floral features. Because the SAM directly concerns flower characters, pollinators are expected to have a strong influence on the application of the model. This hypothesis, however, has never been tested. Here, we investigate whether the identity and diversity of pollinators can be used as a proxy to predict the application of the SAM in exclusive zoophilous plants. We present a new approach to unravel the dynamics of the model and test it on several widespread Arum (Araceae) species. By identifying the species composition, abundance and spatial variation of arthropods trapped in inflorescences, we show that some species (i.e. A. cylindraceum and A. italicum) display a generalist reproductive strategy, relying on the exploitation of a low number of dipterans, in contrast to the pattern seen in the specialist A. maculatum (pollinated specifically by two fly species only). Based on the model presented here, the application of the SAM is predicted for the first two and not expected in the latter species, those predictions being further confirmed by allometric measures. We here demonstrate that while an increase in the female zone occurs in larger inflorescences of generalist species, this does not happen in species demonstrating specific pollinators. This is the first time that this theory is both proposed and empirically tested in zoophilous plants. Its overall biological importance is discussed through its application in other non-Arum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albre J, Gibernau M (2008) Reproductive biology of Arum italicum (Araceae) in the south of France. Bot J Linn Soc 156(1):43–49

    Article  Google Scholar 

  • Albre J, Quilichini A, Gibernau M (2003) Pollination ecology of Arum italicum (Araceae). Bot J Linn Soc 141(2):205–214

    Article  Google Scholar 

  • Barrett SCH (1992) Gender variation and the evolution of dioecy in Wurmbea dioica (Liliaceae). J Evol Biol 5(3):423–444

    Article  Google Scholar 

  • Barrett SCH, Harder LD, Worley AC (1996) The comparative biology of pollination and mating in flowering plants. Philos Trans R Soc Lond Ser B Biol Sci 351(1345):1271–1280

    Article  Google Scholar 

  • Bedalov M, Küpfer P (2005) Studies on the genus Arum (Araceae). Bull de la société Neuchâteloise des Sci Naturelles 128:43–70

  • Bickel AM, Freeman DC (1993) Effects of pollen vector and plant geometry on floral sex ratio in monoecious plants. Am Midl Nat 130:239–247

    Article  Google Scholar 

  • Boyce PC (1993) The genus Arum. The royal botanical gardens. Kew, London

    Google Scholar 

  • Brooks M, Iwasa Y (2010) Size-dependent sex change can be the ESS without any size advantage of reproduction when mortality is size-dependent. Theor Popul Biol 78(3):183–191. doi:10.1016/j.tpb.2010.07.001

    Article  PubMed  Google Scholar 

  • Burd M, Allen TFH (1988) Sexual allocation strategy in wind-pollinated plants. Evolution 42(2):403–407

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Monographs in population biology, vol 18. Princeton University Press, Princeton

    Google Scholar 

  • Chartier M, Gibernau M (2009) Size variations of flowering characters in Arum maculatum (Araceae). Aroideana 32:153–158

    Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86(8):361–377

    Article  CAS  Google Scholar 

  • Chittka L, Spaethe J, Tautz J (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98(7):3898–3903

    Article  PubMed  Google Scholar 

  • Chouteau M, Gibernau M, Barabé D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42

    Article  Google Scholar 

  • Cruden RW (1977) Pollen–ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31(1):32–46

    Article  Google Scholar 

  • Espíndola A, Buerki S, Küpfer P, Bedalov M, Alvarez N (2010) New insights into the phylogeny and biogeography of Arum L. (Araceae): unravelling its evolutionary history. Bot J Linn Soc 163:14–32

    Article  Google Scholar 

  • Espíndola A, Pellissier L, Alvarez N (2011) Variation in the proportion of flower visitors of Arum maculatum across its distributional range in relation with community-based climatic niche analysis. OIKOS 120(5):728–734

    Article  Google Scholar 

  • Freude H, Harde KW, Lohse GA (1964) Die Käfer Mitteleuropas. Goecke & Evers, Krefeld

    Google Scholar 

  • Fridlender A (1999) Observations sur la biologie de l’Arum cylindraceum (Gasp.) Araceae en Corse. Acta Bot Gallica 146(4):297–309

    Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44(2):189–208

    Article  PubMed  CAS  Google Scholar 

  • Gibernau M (2003) Pollinators and visitors of Aroid inflorescences. Aroideana 26(11):73–91

    Google Scholar 

  • Gibernau M, Albre J (2008) Size variations of flowering characters in Arum italicum (Araceae). Aroideana 31:101–106

    Google Scholar 

  • Gibernau M, Macquart D, Przetak G (2004) Pollination in the genus Arum—a review. Aroideana 27:148–166

    Google Scholar 

  • Guillon JM, Julliard R, Leturque H (2006) Evolution of habitat-dependent sex allocation in plants: superficially similar to, but intrinsically different from animals. J Evol Biol 19(2):500–512. doi:10.1111/j.1420-9101.2005.01012.x

    Article  PubMed  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133(3):323–344

    Article  Google Scholar 

  • Ježek J (1990) Redescriptions of nine common palaearctic and holarctic species of Psychodini End. (Diptera: Psychodidae). Acta Entomologica Musei Nationalis Pragae 43:33–83

    Google Scholar 

  • Klinkhamer PGL, deJong TJ, Metz H (1997) Sex and size in cosexual plants. Trends Ecol Evol 12(7):260–265

    Article  PubMed  CAS  Google Scholar 

  • Lack AJ, Diaz A (1991) The pollination of Arum maculatum L.—a historical review and new observations. Watsonia 18:333–342

    Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338

    Google Scholar 

  • Lovett-Doust J, Cavers PB (1982) Ressource allocation and gender in the green dragon Arisaema dracontinum (Araceae). Am Midl Nat 108:144–148

    Article  Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanical Gardens. Kew, London

    Google Scholar 

  • Méndez M (2001) Sexual mass allocation in species with inflorescences as pollination units: a comparison between Arum italicum and Arisaema (Araceae). Am J Bot 88(10):1781–1785

    Article  PubMed  Google Scholar 

  • Méndez M, Obeso JR (1992) Influencia del osmóforo en la producción de infructescencias en Arum italicum Miller (Araceae). Anales del jardín Botánico de Madrid 50:229–237

    Google Scholar 

  • Méndez M, Obeso JR (1993) Size-dependent reproductive and vegetative allocation in Arum italicum (Araceae). Can J Bot 71:309–314

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56(3):1–12

    Article  Google Scholar 

  • Policansky D (1982) Sex change in plants and animals. Annu Rev Ecol Syts 13:471–495

    Article  Google Scholar 

  • Primack RB, McCall C (1986) Gender variation in a red maple population (Acer rubrum; Aceraceae): a seven-year study of a “Polygamodioecious” species. Am J Bot 73(9):1239–1248

    Article  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. W.H. Freeman, New York

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

  • Richardson CR, Clay K (2001) Sex-ratio variation among Arisaema species with different patterns of gender diphasy. Plant Species Biol 16:139–149

    Article  Google Scholar 

  • Urru I, Stensmyr MC, Hansson BS (2011) Pollination by brood-site deception. Phytochemistry 72(13):1655–1666. doi:10.1016/j.phytochem.2011.02.014

    Article  PubMed  CAS  Google Scholar 

  • Vitt P, Holsinger KE, Jones CS (2003) Local differentiation and plasticity in size and sex expression in Jack-in-the-pulpit, Arisaema triphyllum (Araceae). Am J Bot 90(12):1729–1735

    Article  PubMed  Google Scholar 

  • Warner RR (1988) Sex change in fishes: hypotheses, evidence, and objections. Environ Biol Fishes 22(2):81–91

    Article  Google Scholar 

  • Withers P (1988) Moth flies diptera: psychodidae. Dipter Dig 4:1–83

    Google Scholar 

  • Wright SI, Barrett SCH (1999) Size-dependent gender modification in a hermaphroditic perennial herb. Proc R Soc Lond B 266:225–232

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Kącki, Dr. Dajdok (University of Wrocław, Poland), Dr. Triponez and Prof. Küpfer (University of Neuchâtel, Switzerland) for their invaluable technical assistance during field work. They also thank Dr. Haenni, Dr. Rulik, Dr. Lods-Crozet, Mr. Chandler, Dr. Rohácek, Dr. Skuhravà and Dr. Szadziewski for their indispensable help during insect identification, and J. Litman for correcting the English. We thank two anonymous reviewers and the Editor for their constructive comments and suggestions. The present study was funded by the Swiss National Science Foundation (Project No. 3100A0-116778 awarded to N.A), the Matthey-Wütrich Grant of the University of Neuchâtel awarded to N.R. and the Travel Grant of the Swiss Academy of Sciences SCNAT + awarded to A.E. N.A. is currently funded by a Swiss National Science Foundation Ambizione fellowship (PZ00P3_126624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahí Espíndola.

Additional information

Handling editor: Jonathan Lundgren

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revel, N., Alvarez, N., Gibernau, M. et al. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod-Plant Interactions 6, 35–44 (2012). https://doi.org/10.1007/s11829-011-9164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-011-9164-1

Keywords

Navigation