Arthropod-Plant Interactions

, Volume 5, Issue 1, pp 19–27 | Cite as

Water availability alters the tri-trophic consequences of a plant-fungal symbiosis

  • Kelsey M. Yule
  • James B. Woolley
  • Jennifer A. Rudgers


Plant–microbe protection symbioses occur when a symbiont defends its host against enemies (e.g., insect herbivores); these interactions can have important influences on arthropod abundance and composition. Understanding factors that generate context-dependency in protection symbioses will improve predictions on when and where symbionts are most likely to affect the ecology and evolution of host species and their associated communities. Of particular relevance are changes in abiotic contexts that are projected to accompany global warming. For example, increased drought stress can enhance the benefits of fungal symbiosis in plants, which may have multi-trophic consequences for plant-associated arthropods. Here, we tracked colonization of fungal endophyte-symbiotic and aposymbiotic Poa autumnalis (autumn bluegrass) by Rhopalosiphum padi (bird-cherry-oat aphids) and their parasitoids (Aphelinus sp.) following manipulations of soil water levels. Endophyte symbiosis significantly reduced plant colonization by aphids. Under low water, symbiotic plants also supported a significantly higher proportion of aphids that were parasitized by Aphelinus and had higher above-ground biomass than aposymbiotic plants, but these endophyte-mediated effects disappeared under high water. Thus, the multi-trophic consequences of plant-endophyte symbiosis were contingent on the abiotic context, suggesting the potential for complex responses in the arthropod community under future climate shifts.


Climate change Defensive mutualism Fungal endophyte Herbivory Indirect interaction Neotyphodium 



This work was funded by the Godwin Assistant Professorship and NSF-DEB#054278 to J.A.R. and by the Rice Century Scholars Fund to K.M.Y. We would like to thank Alex Gorischek, Liz Seifert, and Sami Hammer for assistance with the experiments.


  1. Afkhami ME, Rudgers JA (2009) Endophyte-mediated resistance to herbivores depends on herbivore identity in the wild grass Festuca subverticillata. Environ Entomol 38:1086–1095CrossRefPubMedGoogle Scholar
  2. Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923CrossRefPubMedGoogle Scholar
  3. Bacon CW, White JF Jr (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 47–56Google Scholar
  4. Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2006) Flora of North America volume 24: North of Mexico: Magnoliophyta: Commelinidae (in part): Poaceae, part 1. Oxford University Press, New York, NYGoogle Scholar
  5. Bazely DR, Vicari M, Emmerich S, Filip L, Lin D, Inman A (1997) Interactions between herbivores and endophyte-infected Festuca rubra from the Scottish islands of St. Kilda, Benbecula and Rum. J App Ecol 34:847–860CrossRefGoogle Scholar
  6. Belesky DP, Stringer WC, Plattner RD (1989) Influence of endophyte and water regime upon tall fescue accessions. 2. Pyrrolizidine and ergopeptine alkaloids. Ann Bot 64:343–349Google Scholar
  7. Bieri APS, Härri SA, Vorburger C, Müller CB (2009) Aphid genotypes vary in their response to the presence of fungal endosymbionts in host plants. J Evol Biol 22:1775–1780CrossRefPubMedGoogle Scholar
  8. Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217CrossRefPubMedGoogle Scholar
  9. Bronstein JL (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30:150–161CrossRefGoogle Scholar
  10. Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190CrossRefGoogle Scholar
  11. Bultman TL, Borowicz KL, Schneble RM, Coudron TA, Bush LP (1997) Effect of a fungal endophyte on the growth and survival of two Euplectrus parasitoids. Oikos 78:170–176CrossRefGoogle Scholar
  12. Bush LP, Fannin FF, Siegel MR, Dahlman DL, Burton HR (1993) Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte grass interactions. Agric Ecosyst Environ 44:81–102CrossRefGoogle Scholar
  13. Carver M, Sullivan DJ, Niemczyk E, Dixon AFG (1988) Encapsulative defense reactions of aphids (Hemiptera: Aphididae) to insect parasitoids (Hymenoptera: Aphidiidae and Aphelinidae) (minireview). Ecology and effectiveness of aphidophaga. Proceedings of an international symposium, held at Teresin, Poland, August 31–September 5, 1987, pp 299–303Google Scholar
  14. Carver M, Woolcock LT (1985) Interactions between Acrythosiphon kondoi (Homoptera, Aphidoidea) and Aphelinus asychis (Hymenoptera, Chalcidoidea) and other parasites and hosts. Entomophaga 30:193–198CrossRefGoogle Scholar
  15. Cassell DL (2002) A randomization-test wrapper for SAS PROCs. In: Inc SI (ed) Proceedings of the twenty-seventh annual SAS users group international conference. SAS Institute Inc., CaryGoogle Scholar
  16. Chaneton EJ, Omacini M (2007) Bottom-up cascades induced by fungal endophytes in multitrophic systems. In: Ohgushi T, Craig TP, Price PW (eds) Ecological communities: plant mediation in indirect interaction webs, 1st edn. Cambridge University Press, Cambridge, pp 164–187Google Scholar
  17. Cheplick GP, Faeth SH (2009) Ecology and evolution of grass-endophyte symbiosis. Oxford University Press, OxfordCrossRefGoogle Scholar
  18. Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297CrossRefGoogle Scholar
  19. Clay K (1996) Interactions among fungal endophytes, grasses and herbivores. Res Popul Ecol 38:191–201CrossRefGoogle Scholar
  20. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127CrossRefPubMedGoogle Scholar
  21. Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci USA 102:12465–12470CrossRefPubMedGoogle Scholar
  22. Clement SL, Elberson LR, Bosque-Perez NA, Schotzko DJ (2005) Detrimental and neutral effects of wild barley—Neotyphodium fungal endophyte associations on insect survival. Entomol Exp Appl 114:119–125CrossRefGoogle Scholar
  23. Cohen JE, Jonsson T, Müller CB, Godfray HCJ, Savage VM (2005) Body sizes of hosts and parasitoids in individual feeding relationships. Proc Natl Acad Sci USA 102:684–689CrossRefPubMedGoogle Scholar
  24. Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 164:431–444CrossRefPubMedGoogle Scholar
  25. de Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc Lond B Biol Sci 273:1301–1306CrossRefGoogle Scholar
  26. Edgington ES (1987) Randomization tests, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  27. Faeth SH, Bultman TL (2002) Endophytic fungi and interactions among host plants, herbivores, and natural enemies. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 89–123Google Scholar
  28. Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356CrossRefPubMedGoogle Scholar
  29. Francke DL, Harmon JP, Harvey CT, Ives AR (2008) Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. Entomol Exp Appl 127:118–124CrossRefGoogle Scholar
  30. Gao F, Zhu SR, Sun YC, Du L, Parajulee M, Kang L, Ge F (2008) Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environ Entomol 37:29–37CrossRefPubMedGoogle Scholar
  31. Gonthier DJ, Sullivan TJ, Brown KL, Wurtzel B, Lawal R, VandenOever K, Buchan Z, Bultman TL (2008) Stroma-forming endophyte Epichloë glyceriae provides wound-inducible herbivore resistance to its grass host. Oikos 117:629–633CrossRefGoogle Scholar
  32. Gould FW (1975) The grasses of Texas. Texas A&M University Press, College Station, TXGoogle Scholar
  33. Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838CrossRefPubMedGoogle Scholar
  34. Grewal SK, Grewal PS, Gaugler R (1995) Endophytes of fescue grasses enhance susceptibility of Popillia japonica larvae to an entomopathogenic nematode. Entomol Exp Appl 74:219–224Google Scholar
  35. Gundel PE, Batista WB, Texeira M, Martinez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc Lond B Biol Sci 275:897–905CrossRefGoogle Scholar
  36. Haine ER (2008) Symbiont-mediated protection. Proc R Soc Lond B Biol Sci 275:353–361CrossRefGoogle Scholar
  37. Härri SA, Krauss J, Müller CB (2008a) Fungal endosymbionts of plants reduce lifespan of an aphid secondary parasitoid and influence host selection. Proc R Soc Lond B Biol Sci 275:2627–2632CrossRefGoogle Scholar
  38. Härri SA, Krauss J, Müller CB (2008b) Natural enemies act faster than endophytic fungi in population control of cereal aphids. J Anim Ecol 77:605–611CrossRefPubMedGoogle Scholar
  39. Härri SA, Krauss J, Müller CB (2008c) Trophic cascades initiated by fungal plant endosymbionts impair reproductive performance of parasitoids in the second generation. Oecologia 157:399–407CrossRefPubMedGoogle Scholar
  40. Härri SA, Krauss J, Müller CB (2009) Extended larval development time for aphid parasitoids in the presence of plant endosymbionts. Ecol Entomol 34:20–25CrossRefGoogle Scholar
  41. Hatano E, Kunert G, Michaud JP, Weisser WW (2008) Chemical cues mediating aphid location by natural enemies. Eur J Entomol 105:797–806Google Scholar
  42. Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208CrossRefGoogle Scholar
  43. IPCC (2007) Climate change 2007: the physical science basis. Summary for policy makers. Intergovernmental Panel on Climate Change Geneva, Switzerland, p 18Google Scholar
  44. Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions 2:53–62CrossRefGoogle Scholar
  45. Kannadan S, Rudgers JA (2008) Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol 22:706–713CrossRefGoogle Scholar
  46. Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45CrossRefPubMedGoogle Scholar
  47. Lewis GC, Ravel C, Naffaa W, Astier C, Charmet G (1997) Occurrence of Acremonium endophytes in wild populations of Lolium spp. in European countries and a relationship between level of infection and climate in France. Ann Appl Biol 130:227–238CrossRefGoogle Scholar
  48. Losey JE, Denno RF (1998) The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol Entomol 23:53–61CrossRefGoogle Scholar
  49. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  50. Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, LondonGoogle Scholar
  51. Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467CrossRefPubMedGoogle Scholar
  52. Novas MV, Collantes M, Cabral D (2007) Environmental effects on grass-endophyte associations in the harsh conditions of south Patagonia. FEMS Microbiol Ecol 61:164–173CrossRefPubMedGoogle Scholar
  53. Noyes J (1982) Collecting and preserving chalcid wasps (Hymenoptera: Chalcidoidea). J Nat Hist 16:315–334CrossRefGoogle Scholar
  54. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800CrossRefPubMedGoogle Scholar
  55. Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host-parasite interaction webs. Nature 409:78–81CrossRefPubMedGoogle Scholar
  56. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  57. Rudgers JA, Afkhami ME, Rua MA, Davitt AJ, Hammer S, Huguet VM (2009) A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90:1531–1539CrossRefPubMedGoogle Scholar
  58. Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124CrossRefGoogle Scholar
  59. Rudgers JA, Clay K (2008) An invasive plant-fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840CrossRefPubMedGoogle Scholar
  60. Rudgers JA, Swafford AL (2009) Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic Appl Ecol 10:43–51CrossRefGoogle Scholar
  61. Rudgers JA, Davitt AJ, Clay K, Gundel P, Omacini M (2010) Searching for evidence against the mutualistic nature of hereditary symbiosis: a comment on Faeth (2009). American Naturalist (in press)Google Scholar
  62. Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160CrossRefPubMedGoogle Scholar
  63. Saona NM, Albrectsen BR, Ericson L, Bazely DR (2010) Environmental stresses mediate endophyte-grass interactions in a boreal archipelago. J Ecol 98:470–479CrossRefGoogle Scholar
  64. Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996CrossRefPubMedGoogle Scholar
  65. Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3316CrossRefGoogle Scholar
  66. Villagra CA, Ramirez CC, Niemeyer HM (2002) Antipredator responses of aphids to parasitoids change as a function of aphid physiological state. Anim Behav 64:677–683CrossRefGoogle Scholar
  67. White JF Jr, Torres MS (eds) (2009) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, FLGoogle Scholar
  68. Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant Microbe Interact 13:1027–1033CrossRefPubMedGoogle Scholar
  69. Yue Q, Wang CL, Gianfagna TJ, Meyer WA (2001) Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinacea Schreb.). Phytochemistry 58:935–941CrossRefPubMedGoogle Scholar
  70. Züst T, Härri SA, Müller CB (2008) Endophytic fungi decrease available resources for the aphid Rhopalosiphum padi and impair their ability to induce defenses against predators. Ecol Entomol 33:80–85Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kelsey M. Yule
    • 1
  • James B. Woolley
    • 2
  • Jennifer A. Rudgers
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyRice UniversityHoustonUSA
  2. 2.Department of EntomologyTexas A&M UniversityCollege StationUSA

Personalised recommendations