Skip to main content

Synchronisation of adult activity of the archaic moth, Micropterix calthella L. (Lepidoptera, Micropterigidae), with anthesis of sedges (Carex spp., Cyperaceae) in an ancient wood


Micropterix calthella L. (Micropterigidae) is a small, day-flying moth from the basal-most extant lineage of the Lepidoptera. The species name reflects its conspicuous presence on Caltha palustris L. (Ranunculaceae). However, adults also favour sedges (Carex spp., Cyperaceae), on which they gather gregariously to feed on pollen and find mates. In a UK ancient wood, the phenology of eight sedge species together with individual moth and mating pair densities were monitored from 15th April to 8th June 2009. 4841 moth sightings were recorded. Moths on Carex spikes at various developmental stages were compared with null models to test for preference patterns. Approximately 99% of individuals selected Carex spikes where dehiscing anthers were present. The sedge phenology data suggest three distinct periods of pollen production. Overlaying this with the moth data reveals moth phenology strongly linked to a suite of early and mid-season woodland sedges. Of the twenty-eight other angiosperm species (seventeen families) in flower, only Ranunculus ficaria L. (Ranunculaceae) and R. repens L. attracted moths. Adult moths kept in captivity on potted Carex flacca Schreb. for 10 days laid eggs at the plant-soil interface. When C. flacca pollen production ceased, surviving adults were moved onto freshly dehiscing anthers of potted C. pallescens L., where they survived a further 14 days. Soil-dwelling first instar larvae were observed to consume C. sylvatica Huds leaves. In a choice experiment, larvae were significantly more likely to consume C. sylvatica than Stellaria media (L.) Vill. (Caryophyllaceae) leaf material (previously noted to be favoured by larvae). Synchrony between adult moths and Carex spp., and the use of Carex by both adults and larvae, suggests sedges may be host plants for M. calthella in lowland ancient woodlands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Beck J, Fiedler K (2009) Adult Life Spans of Butterflies (Lepidoptera: Papilionoidea + Hesperioidea): broadscale contingencies with adult and larval traits in multi-species comparisons. Biol J Linn Soc 96:166–184

    Article  Google Scholar 

  2. Carter DJ, Dugdale JS (1982) Notes on collecting and rearing Micropterix (Lepidoptera: Micropterigidae) Larvae in England. Entomol Gazette 33:43–47

    Google Scholar 

  3. Chinery M (1989) Butterflies and day-flying moths of Britain and Europe. William Collins Sons & Co, Glasgow

    Google Scholar 

  4. Common IFB (1990) Moths of Australia. Melbourne University Press, Melbourne

    Google Scholar 

  5. Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17(8):361–369

    Article  Google Scholar 

  6. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) The biology of floral scent. Taylor and Francis Publishers, Abingdon, Oxon

    Google Scholar 

  7. Douglas AE (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18(1):31–38

    Article  Google Scholar 

  8. Dzwonko Z, Loster S (1992) Species richness and seed dispersal to secondary woods in Southern Poland. J Biogeogr 19:195–204

    Article  Google Scholar 

  9. Goetghebeur P (1998) Cyperaceae. In: Kubitzki K, Huber H, Rudall PJ, Stevens PS, Stützel T (Eds) The families and genera of vascular plants. Flowering plants, Monocotyledons: Alismatanae and Commelinanea (except Gramineae), vol. IV, Springer Verlag, Berlin, pp 141–190

  10. Hamon C, Chauvin G (1995) Larval integument and its differentiations in Micropterix calthella L. (Lepidoptera: Micropterigidae): anatomy and ultrastructure. Int J Morphol Embryol 24(2):213–222

    Article  Google Scholar 

  11. Harder LD, Barrett SCH, Cole WW (2000) The mating consequences of sexual segregation within inflorescences of flowering plants. Proc R Soc Lond 267(1441):315–320

    Article  CAS  Google Scholar 

  12. Harper JL (1957) Ranunculus acris L., R. repens L. and R. bulbosus L. J Ecol 45 (1): 289–342

  13. Heath J (1983) The moths and butterflies of Great Britain and Ireland, Vol. I: Micropterigidae–Heliozelidae. Harley Books, Colchester, Essex

    Google Scholar 

  14. Jermy AC, Simpson DA, Foley MJY, Porter MS (2007) Sedges of the British Isles BSBI Handbook No 1, 3rd edn. Bot Soc Brit Isles, London

    Google Scholar 

  15. Jurgens A, Dotterl S (2004) Chemical composition of anther volatiles in Ranunculaceae: genera-specific profiles in Anemone, Aquilegia, Pulsatilla, Ranunculus, and Trollius species. Am J Bot 91(12):1969–1980

    Article  Google Scholar 

  16. Karsholt O (2004) In: Karsholt O, van Nieukerken EJ (eds) Lepidoptera, Moths, Micropterigidae. Fauna Europaea version 1.3. Accessed 5 July 2009

  17. Knuth P (1898) Handbook of flower pollination. Based upon Hermann Müller’s work, ‘The Fertilisation of Flowers by Insects’ Volume II Observations on flower pollination made in Europe and the Arctic regions on species belonging to the natural orders Ranunculaceae to Stylidieae English translation by JR Ainsworth Davis 1908. Accessed 5 July 2009

  18. Kozlov MV, Zvereva EL (1999) A failed attempt to demonstrate pheromone communication in Archaic Moths of the Genus Sabatinca Walker (Lepidoptera, Micropterigidae). Ecol Lett 2:215–218

    Article  Google Scholar 

  19. Kozlov MV, Zvereva EL (2006) Aggregation of Micropterix maschukella moths on inflorescences of common elder: mating at foraging sites (Lepidoptera, Micropterigidae). Ethol Ecol Evol 18:147–158

    Google Scholar 

  20. Kristensen NP (1998) Handbook of zoology Vol IV/35 Lepidoptera, Moths and Butterflies. In: Kristensen NP (ed) Volume 1: evolution, systematics, and biogeography, Walter de Gruyter, Berlin

  21. Lorenz RE (1961) Biologie und Morphologie von Micropterix calthella (L.) (Lep. Micropterygidae). Dtsch Entomologische Z 8 (I/II): 1–23

  22. Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am Nat 165:411–419

    Article  PubMed  Google Scholar 

  23. Michalski SG, Durka W (2007) Synchronous pulsed flowering: analysis of the flowering phenology in Juncus (Juncaceae). Ann Bot 1–15

  24. Natural England (2006) Ancient woodland: guidance material for local authorities appendix II. Accessed 7th July 2009

  25. O’Brian DM, Boggs CL, Fogel ML (2003) Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs. Proc R Soc Lond Ser B Biol Sci 270:2631–2636

    Google Scholar 

  26. Peterken GF (1974) A method for assessing woodland flora for conservation using indicator species. Biol Cons 6:239–245

    Article  Google Scholar 

  27. Peterken GF, Game M (1984) Historical factors affecting the number and distribution of vascular plant species in the woodlands of Central Lincolnshire. J Ecol 72:155–182

    Article  Google Scholar 

  28. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins, London

    Google Scholar 

  29. Rackham O (2008) Ancient woodlands: modern threats. New Phytol 180:571–586

    Article  PubMed  Google Scholar 

  30. Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70(4):617–643

    Google Scholar 

  31. Schwartz-Tzachor R, Dafni A, Potts SG, Eisikowitch D (2004) An ancient pollinator of a contemporary plant (Cyclamen persicum): when pollination syndromes break down. Flora 201:370–373

    Google Scholar 

  32. Simpson DA (1992) A revision of the genus Mapania. Royal Botanic Gardens, Kew, Surrey

    Google Scholar 

  33. Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90(7):1071–1086

    Article  CAS  Google Scholar 

  34. Sparks TH, Greatorex Davies JN, Mountford JO, Hall ML, Marrs RH (1996) The effects of shade on the plant communities of rides in plantation woodland and implications for butterfly conservation. For Ecol Manag 80(1–3):197–207

    Article  Google Scholar 

  35. Stace C (1997) New Flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  36. Thien LB, Bernhardt P, Gibbs GW, Pellmyr O, Bergstrom G, Groth I, McPherson G (1985) The pollination of Zygogynum (Winteraceae) by a Moth, Sabatinca (Micropterigidae)—an ancient association. Science 227(4686):540–543

    Article  CAS  PubMed  Google Scholar 

  37. Wäckers FL, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Ann Rev Entomol 52:301–323

    Article  Google Scholar 

  38. Weigmann BM, Regier JCR, Mitter C (2002) Combined molecular and morphological evidence on the phylogeny of the earliest lepidopteran lineages. Zool Scr 31(1):67–81

    Article  Google Scholar 

  39. Wheeler D (1996) The role of nourishment in oogenesis. Ann Rev Entomol 41:407–431

    Article  CAS  Google Scholar 

  40. William James and Co. Suppliers of horticultural fleece. Accessed 5 July 2009

  41. Wilsden LW (1915) Notes towards the history of Plumpton. Typewritten document. Northampton Central Library (local History)

  42. Zeller-Lukashort HC, Kurz ME, Lees DC, Kurz MA (2007) A Review of Micropterix Hübner, 1825 from Northern and Central Europe (Micropterigidae). Nota Lepidoptera 30(2):235–298

    Google Scholar 

Download references


We are grateful to Cheryl Lundberg at The Forestry Commission for permission to work in Plumpton Wood, to David Lees for commenting on an earlier draft of this manuscript, to Marion Kurz for translating the Lorenz paper, and to Tinaz Erenler for his patience on the many visits to Plumpton. We are also grateful to two anonymous referees whose comments greatly improved the focus of the manuscript. HE is partially funded by a grant from The Crowther Trust (The Open University) and the T.D. Lewis Fund (The University of Northampton).

Author information



Corresponding author

Correspondence to Hilary E. Erenler.

Additional information

Handling Editor: Steven Johnson.


Appendix 1

See Table 7.

Table 7 Expected (exp.) and observed (obs.) values for each inflorescence category (see Table 1 for descriptions)

Appendix 2

List of species flowering in sampling areas (15th April 2009–8th June 2009)

*M. calthella adults present on these species. Note; Caltha palustris (Ranunculaceae) does not occur in Plumpton Wood.


Anemone nemorosa L.

Ranunculus ficaria L.*

Ranunculus repens L.*


Lychnis flos-cuculi L.

Stellaria holostea L.


Viola reichenbachiana Jord. Ex Boreau

Viola riviniana Rchb.


Cardamine pratensis L.


Primula vulgaris Huds.


Crataegus laevigata (Poir.) DC.

Crataegus monogyna Jacq.

Potentilla anserine L.

Potentilla sterlis (L.) Garcke

Rubus fruticosus L. agg.


Mercurialis perennis L.


Geranium robertianum L.


Ajuga reptans L.

Glechoma hederacea L.

Lamiastrum galeobdolon (L.) Ehrend. & Polatschek.


Veronica montana L.


Galium odoratum (L.) Scop.


Viburnum opulus L.


Taraxacum officinale Wigg. group


Arum maculatum L.


Luzula multiflora (Ehrh.) Lej.

Luzula pilosa L. Willd.


Hyacinthoides non-scriptus (L.) Chouard ex Rothm.


Dactylorhiza fuchsii (Druce) Soo

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erenler, H.E., Gillman, M.P. Synchronisation of adult activity of the archaic moth, Micropterix calthella L. (Lepidoptera, Micropterigidae), with anthesis of sedges (Carex spp., Cyperaceae) in an ancient wood. Arthropod-Plant Interactions 4, 117–128 (2010).

Download citation


  • Micropterix calthella
  • Sedge
  • Carex
  • Ancient wood
  • Micropterigidae
  • Phenology
  • Cyperaceae
  • Lepidoptera