Skip to main content
Log in

The defensive role of latex in plants: detrimental effects on insects

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The defensive role of the latex of Calotropis procera has recently been reported. In this study, latex proteins involved in detrimental effects on insects were evaluated on another important crop pest. The latex was fractionated to obtain its major protein fraction, which was then used to evaluate its insecticidal properties against Callosobruchus maculatus (Coleoptera: Bruchidae) in artificial bioassays. Laticifer proteins (LP) were investigated to characterize their action in such an activity. LP was highly insecticidal at doses as low as 0.1% (W/W). This effect was slightly augmented in F1 generation reared in artificial seeds containing LP at similar proportions of F0, but was fully reversed when F1 developed in LP-free seeds. The insecticidal proteins were not retained in a chitin column, and did not lose their insecticidal activity, even after heat treatment or pronase digestion. However, these samples inhibited papain (EC 3.4.22.2) activity and gut proteases of C. maculatus larvae, and a reverse zymogram showed the presence of protein bands resistant to papain digestion. These activities were not observed in unheated LP as they were probably masked by abundant endogenous cysteine protease (EC 3.4.22.16) activity present in unheated LP. LP was resistant to proteolysis when assayed with C. maculatus gut extract. However, gut proteins of C. maculatus were digested when incubated with LP. These observations and the deleterious effects of LP upon C. maculatus, reinforce the hypothesis that laticifer fluids are involved in plant defense against insects and indicate C. procera latex to be a source of promising insecticidal proteins. The inhibitor of proteolysis present in the latex seems to be resistant to heat and proteolysis and is certainly involved in the detrimental effects observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe M, Abe K, Kuroda M, Arai S (1992) Corn kernel cysteine protease inhibitor as a novel cystatin superfamily member of plant origin. Eur J Biochem 209:933–937. doi:10.1111/j.1432-1033.1992.tb17365.x

    Article  CAS  PubMed  Google Scholar 

  • Amani M, Moosavi-Movahedi AA, Floris G, Mura A, Kurganov BI, Ahmad F, Saboury AA (2007) Two-state irreversible thermal denaturation of Euphorbia characias latex amine oxidase. Biophys Chem 125:254–259. doi:10.1016/j.bpc.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • Azarkan M, Amrani A, Nus M, Vandermeers A, Zerhouni S, Smolders N, Looze Y (1997) Carica papaya is a rich source of a class II chitinase. Phytochemistry 48:1319–1325. doi:10.1016/S0031-9422(97)00469-X

    Article  Google Scholar 

  • Azarkan M, Dibiani R, Goormaghtigh E, Raussens V, Baeyens-Volant D (2006) The papaya Kunitz-type trypsin inhibitor is a highly stable β-sheet glycoprotein. Biochim Biophys Acta 1764:1063–1072. doi:10.1016/j.bbapap.2006.02.014

    CAS  PubMed  Google Scholar 

  • Boller T (1992) Biochemical analysis of chitinases and beta-1–3-glucanase. In: Gurr SJ, Mc Pherson MJ, Bowles DJ (eds) Molecular plant pathology: a practical approach. Pergamon Press, New York, pp 23–29

    Google Scholar 

  • Domsalla A, Melzing MF (2008) Occurrence and properties of proteases in plant latices. Planta Med 74:699–711. doi:10.1055/s-2008-1074530

    Article  CAS  PubMed  Google Scholar 

  • Dubey VK, Jagannadham MV (2003) Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry 62:1057–1071. doi:10.1016/S0031-9422(02)00676-3

    Article  PubMed  Google Scholar 

  • El Moussaoui A, Nijs M, Paul C, Wintjens R, Vincentelli J, Azarkan M, Looze Y (2001) Revising the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defense mechanism. Cell Mol Life Sci 58:556–570. doi:10.1007/PL00000881

    Article  CAS  PubMed  Google Scholar 

  • Fiorillo F, Palocci C, Soro S, Pasqua G (2007) Latex lipase of Euphorbia characias L: a specific acylhydrolase with several isoforms. Plant Sci 172:722–727. doi:10.1016/j.plantsci.2006.11.020

    Article  CAS  Google Scholar 

  • Freitas CDT, Oliveira JO, Miranda MRA, Macedo NR, Sales MP, Villas-Boas LA, Ramos MV (2007) Enzymatic activities and protein profile of latex from Calotropis procera. Plant Physiol Biochem 45:781–789. doi:10.1016/j.plaphy.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  • Giordani R, Benyahia S, Teissere M, Noat G (1992) Purification and properties of N-acetyl-β-d-glucosaminase from Hevea brasiliensis latex. Plant Sci 84:25–34

    Article  CAS  Google Scholar 

  • Gomes CEM, Barbosa AEAD, Macedo LLP, Pitanga JCM, Moura FT, Oliveira AS, Moura RM, Queiroz AFS, Macedo FP, Andrade LBS, Vidal MS, Sales MS (2005) Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiol Biochem 43:1095–1102. doi:10.1016/j.plaphy.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  • Kekwick RGO (2001) Latex and laticifers. In: Encyclopedia of live science. John Wiley & Sons, Nature Publishing Group, pp 1–6

  • Konno K, Hirayama C, Nakamura M, Tateishi K, Tasmura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378. doi:10.1046/j.1365-313X.2003.01968.x

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liggieri C, Arribére MC, Trejo SA, Canals F, Avilés FX, Priolo NS (2004) Purification and biochemical characterization of Asclepain c I from the latex of Asclepias curassavica L. Protein J 23:403–411. doi:10.1023/B:JOPC.0000039554.18157.69

    Article  CAS  PubMed  Google Scholar 

  • Monti R, Contieo J, Goulart AJ (2004) Isolation of natural inhibitors of papain obtained from Carica papaya latex. Braz Arch Biol Technol 47:747–754

    Article  CAS  Google Scholar 

  • Morcelle SR, Trejo SA, Canals F, Avilés FX, Priolo NS (2004a) Funastrain c II: a cysteine endopeptidase purified from the latex of Funastrum clausum. Protein J 23:205–215. doi:10.1023/B:JOPC.0000026416.90134.7b

    Article  CAS  PubMed  Google Scholar 

  • Morcelle SR, Caffini NO, Priolo CN (2004b) Proteolytic properties of Funastrum clausum latex. Fitoterapia 75:480–493. doi:10.1016/j.fitote.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Ohashi A, Murata E, Yamamoto K, Majima E, Sano E, Le QT, Katunuma N (2003) New functions of lactoferrin and β-casein in mammalian milk as cysteine protease inhibitors. Biochem Biophys Res Commun 306:98–103. doi:10.1016/S0006-291X(03)00917-3

    Article  CAS  PubMed  Google Scholar 

  • Oliveira JS, Bezerra DP, Freitas CDT, Marinho-Filho JDB, Moraes MO, Pessoa C, Costa-Lotufo LV, Ramos MV (2007) In vitro cytotoxicity against different human cancer cell lines of laticifer proteins of Calotropis procera (Ait) R. Br. Toxicol In Vitro 21:1563–1573. doi:10.1016/j.tiv.2007.05.007

    Article  Google Scholar 

  • Pechan T, Ye L, Chang YM, Mitra A, Lin L, Davis FM, Williams WP, Luthe DS (2000) A unique 33 KDa cysteine protease accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci USA 99:13319–13323. doi:10.1073/pnas.202224899

    Article  CAS  PubMed  Google Scholar 

  • Ramos MV, Freitas CDT, Stanisçuaski F, Macedo LLP, Sales MP, Sousa DP, Carlini CR (2007) Performance of distinct crop pests reared on diets enriched with latex proteins from Calotropis procera: role of laticifer proteins in plant defense. Plant Sci 173:349–357. doi:10.1016/j.plantsci.2007.06.008

    Article  CAS  Google Scholar 

  • Reissig JL, Strominger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetyl amino sugars. J Biol Chem 217:959–966

    CAS  PubMed  Google Scholar 

  • Sritanyarat W, Pearce G, Siems WF, Ryan CA, Wititsuwannakul R, Wititsuwannakul D (2006) Isolation and characterization of isoinhibitors of the potato protease inhibitor I family from the latex of the rubber trees, Hevea brasiliensis. Phytochemistry 67:1644–1650. doi:10.1016/j.phytochem.2005.12.016

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Licastro F, Morini MC, Parente A, Savino G, Abbondanza A, Bolognesi A, Falasca AI, Rossi CA (1993) Purification and partial characterization of a mitogenic lectin from the latex of Euphorbia marginata. Biochim Biophys Acta 1158:33–39

    CAS  PubMed  Google Scholar 

  • Taira T, Ohdomari A, Nakama N, Shimoji M, Ishihara M (2005) Characterization and antifungal activity of Gazyumaru (Ficus microcarpa) latex chitinases: both the Chitin-Binding and the antifungal activities of class I chitinase are reinforced with increasing Ionic strength. Biosci Biotechnol Biochem 69:811–818. doi:10.1271/bbb.69.811

    Article  CAS  PubMed  Google Scholar 

  • Xavier-Filho J, Campos F, Maria AP, Ary B, Silva CP, Carvalho MMM (1989) Poor correlation between the levels of protease inhibitors found in seeds of different cultivars of cowpea (Vigna unguiculata) and the resistance/susceptibility to predation by Callosobruchus maculates. J Agric Food Chem 37:1139–1143

    Article  CAS  Google Scholar 

  • Yeang HY, Arif SAM, Yusof F, Sunderasan E (2002) Allergenic proteins of natural rubber latex. Methods 27:32–45. doi:10.1016/S1046-2023(02)00049-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Cearense de Amparo a Pesquisa (FUNCAP), MCT/PADCT, FINEP and Program RENORBIO. M.V.R. is grantee of the International Foundation for Science (IFS 3070-3). The authors are in debt with Mr. Brian Stephen Currey who critically reviewed the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Márcio V. Ramos or Cleverson D. T. Freitas.

Additional information

Handling Editor: Chen-Zhu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, M.V., Grangeiro, T.B., Freire, E.A. et al. The defensive role of latex in plants: detrimental effects on insects. Arthropod-Plant Interactions 4, 57–67 (2010). https://doi.org/10.1007/s11829-010-9084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-010-9084-5

Keywords

Navigation