Skip to main content
Log in

Do aphid galls provide good nutrients for the aphids?: Comparisons of amino acid concentrations in galls among Tetraneura species (Aphididae: Eriosomatinae)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Some aphid species induce leaf galls, in which the fundatrix parthenogenetically produces many nymphs. In order to ensure high performance, galls have to provide the aphids with sufficient nutrients, in particular, amino acids as a nitrogen source. We tested this hypothesis using six Tetraneura aphid species that induce closed galls. We extracted free amino acids from the whole gall tissues of unit weight and quantified the concentration of each amino acid. There were large differences in the total amino acid concentrations among galls of the Tetraneura species. Tetraneura species in which higher concentrations of total amino acids were found in the gall tended to produce larger numbers of offspring. Of the amino acids found, asparagine was predominant in the gall. The asparagine concentration in T. yezoensis galls was several hundred times as high as in control leaves. We discussed why such a high level of asparagine accumulates in aphid galls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akimoto S (1985) Taxonomic study on gall aphids, Colopha, Paracolopha and Kaltenbachiella (Aphidoidea: Pemphigidae) in East Asia, with special reference to their origins and distributional patterns. Insecta Matsumurana N Ser 31:1–79

    Google Scholar 

  • Akimoto S (1995) Coexistence and weak amensalism of congeneric gall-forming aphids on the Japanese elm. Res Popul Ecol (Kyoto). doi:10.1007/BF02515763

  • Akimoto S, Yamaguchi Y (1997) Gall usurpation by the gall-forming aphid, Tetraneura sorini (Insecta Homoptera). Ethol Ecol Evol 9:159–168

    Google Scholar 

  • Anderson PC, Mizell RF (1987) Physiological effects of galls induced by Phylloxera notabilis (Homoptera: Phylloxyridae) on pecan foliage. Environ Entomol 16:264–268

    Google Scholar 

  • Blackman RL, Eastop VF (1994) Aphids on the world’s trees. CAB International University Press, Cambridge, UK

    Google Scholar 

  • Brewer JW, Bishop JW, Skuhravy V (1987) Levels of foliar chemicals in insect-induced galls (Diptera: Cecidomyiidae). J Appl Entomol 104:504–510

    Article  Google Scholar 

  • Burdekin DA, Rushforth KD (1996) Elms resistant to Dutch elm disease. Arboricultural Research Note 2/96. Arboricultural Advisory & Information Service, Alice Holt Lodge, Farnham, England

  • Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, vol 4. Pergamon Press, Oxford, pp 313–390

    Google Scholar 

  • Diamond SE, Blair CP and Abrahamson G (2008) Testing the nutrition hypothesis for the adaptive nature of insect galls: does a non-adapted herbivore perform better in galls? Ecol Entomol. doi:10.1111/j.1365-2311.2007.00979.x

  • Fay PA, Preszler RW, Whitham TG (1996) The functional resource of a gall-forming adelgid. Oecologia. doi:10.1007/BF00328547

  • Forrest JMS (1971) The growth of Aphis fabae as an indicator of the nutritional advantage of galling to the apple aphid Dysaphis devecta. Entomol Exp Appl 14:477–483. doi:10.1007/BF00539945

    Article  Google Scholar 

  • Fu L, Xin Y, Whittemore A (2003) Ulmaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 5. (Ulmaceae through Basellaceae). Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, pp 1–10

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia. doi:10.1007/s004420050401

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119. doi:10.2307/5514

    Article  Google Scholar 

  • Hust PL, Clark CJ (1993) Post-harvest changes in ammonium, amino-acids, and enzymes of amino-acid-metabolism in Asparagus spear tips. J Sci Food Agric 63:465–471. doi:10.1002/jsfa.2740630414

    Article  Google Scholar 

  • Inbar M, Eshel A, Wool D (1995) Interspecific competition among phloem-feeding insects mediated by induced host-plant sinks. Ecology. doi:10.2307/1938152

  • Koyama Y, Yao I, Akimoto S (2004) Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomol Exp Appl. doi:10.1111/j.0013-8703.2004.00207.x

  • Lam HM, Coschigano KT, Oliveira IC et al (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol. doi:10.1146/annurev.arplant.47.1.569

  • Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of source-sink interactions. Oecologia. doi:10.1007/BF00328398

  • Lea PJ, Miflin B (1980) Transport and metabolism of asparagine and other nitrogen compounds within the plant. In: Milflin BJ (ed) The biochemistry of plants: amino acids and derivatives. Academic, New York, pp 569–607

    Google Scholar 

  • Lea PJ, Sodek L, Parry, MAJ et al (2007) Asparagine in plants. An Appl Biol. doi:10.1111/j.1744-7348.2006.00104.x

  • Meyer J, Maresquelle HJ (1983) Anatomie des galles. Grebrüder Borntraeger, Berlin

    Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol. doi:10.1146/annurev.en.37.010192.001541

  • Mordvilko A (1935) Die Blattläuse mit unvollständigem Generationszyklus und ihre Entstehung. Ergeb Fortschr Zool 8:36–328

    Google Scholar 

  • Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187. doi:10.1073/pnas.230294097

    Article  CAS  PubMed  Google Scholar 

  • Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evol Int J Org Evol. doi:10.1111/j.0014-3820.2000.tb00055.x

  • Pate JS (1980) Transport and partitioning of nitrogen solutes. Annu Rev Plant Physiol. doi:10.1146/annurev.pp.31.060180.001525

  • Peoples MB, Gifford RM (1993) Long-distance transport of carbon and nitrogen from sources to sinks in higher plants. In: Denis DT, Turpin DH (eds) Plant physiology. Biochemistry and molecular biology. Wiley, New York, pp 434–447

    Google Scholar 

  • Pérez-García A, Pereira S, Pissarra J et al (1998) Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta. doi:10.1007/s004250050418

  • Price PW, Waring GL, Fernandes GW (1986) Hypothesis on the adaptive significance on the adaptive nature of galls. Proc Entomol Soc Wash 88:361–363

    Google Scholar 

  • Price PW, Waring GL, Fernandes GW (1987) The adaptive nature of insect galls. Environ Entomol 16:15–24

    Google Scholar 

  • Sandström JP, Moran NA (2001) Amino acid budgets in three aphid species using the same host plant. Physiol Entomol. doi:10.1046/j.0307-6962.2001.00235.x

  • SAS (2000) JMP, 5.0.1J. SAS Institute, Cary, NC

    Google Scholar 

  • Sasaki T, Fukuchi N, Ishikawa H (1993) Amino acid flow through aphid and its symbiont: studies with 15N-labeled glutamine. Zool Sci 10:787–791

    CAS  Google Scholar 

  • Scarpari LM, Meinhardt LW, Mazzafera P et al (2005) Biochemical changes during the development of witches’ broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot. doi:10.1093/jxb/eri079

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol. doi:10.1146/annurev.pp.37.060186.002543

  • Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry. doi:10.1016/0031-9422(88)84071-8

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol. doi:10.1016/S0169-5347(03)00247-7

  • Tomisawa R, Akimoto S (2004) Host range and host preference of flea weevil, Orchestes hustachei, parasitizing aphid galls. Entomol Sci. doi:10.1111/j.1479-8298.2003.00038.x

  • Weis AE, Kapelinski A (1984) Manipulation of host plant development by the gall-midge Rhabdophaga strobiloides. Ecol Entomol. doi:10.1111/j.1365-2311.1984.tb00844.x

  • Zhang G, Zhang W, Zhang T (1991) Studies on the genus Tetraneura Hartig, 1841 from China (Homoptera: Pemphigidae) with description of new species and subspecies. Sinozoologia 8:205–236

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Tomohiro Hirose, from the Hokkaido University Center for Instrumental Analysis, for technical support in the amino acids analysis. This research was supported by Grants-in-Aid (No. 12640673 and No. 17370028) for Scientific Research from the Japan Society for the Promotion of Science given to S.A. D.K.S. thanks the Ministry of Education, Science, Sports and Culture of Japan for a scholarship covering her studies in Hokkaido University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora K. Suzuki.

Additional information

Handling Editor: Graham Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D.K., Fukushi, Y. & Akimoto, Si. Do aphid galls provide good nutrients for the aphids?: Comparisons of amino acid concentrations in galls among Tetraneura species (Aphididae: Eriosomatinae). Arthropod-Plant Interactions 3, 241–247 (2009). https://doi.org/10.1007/s11829-009-9064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9064-9

Keywords

Navigation