Skip to main content
Log in

Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae)

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

In order to understand the biological significance of flower odour for attraction of mosquitoes, electrophysiological responses to headspace flower odour samples of Silene otites (L.) Wibel were investigated on Culex pipiens pipiens biotype molestus Forskal 1775 and Aedes aegypti L. using coupled gas chromatographic-electroantennographic detection (GC-EAD). No remarkable differences in antennal responses to the odour compounds have been found between these two mosquito species. Further, the behavioural attractiveness of the electrophysiologically active compounds, singly or as multiple odour mixtures, was evaluated with bioassay experiments with C. pipiens molestus. In bioassays, C. pipiens responded to 14 electrophysiologically active compounds in different magnitudes (65–20%) and acetophenone, linalool oxide (pyranoid), phenyl acetaldehyde and phenylethyl alcohol were found as more attractive in comparison to the least attractive compound, hexanol. In two-stimulus choice test, mosquitoes were significantly more attracted to the mixture of the four most attractive compounds compared to the mixture of all 14 compounds. The results of present study confirm that floral odours are attractive cues for mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Malek AA, Baldwin WF (1961) Specificity of plant feeding in mosquitoes as determined by radioactive phosphorus. Nature 192:178–179

    Article  PubMed  CAS  Google Scholar 

  • Andersson J, Borg-Karlson AK, Wiklund C (2000) Sexual cooperation and conflict in butterflies: a male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc R Soc Lond Ser 267:1271–1275

    Article  CAS  Google Scholar 

  • Andersson S (2003) Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology 13:13–20

    Article  CAS  Google Scholar 

  • Arn H, Städler E, Rauscher S (1975) The electroantennographic detector: a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift fuer Naturforschung C 30:722–725

    Google Scholar 

  • Balkenius A, Rosén W, Kelber A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol A 192:431–437

    Article  Google Scholar 

  • Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85:257–262

    Article  Google Scholar 

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J Chem Ecol 30:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Borg-Karlson AK, Tengo J, Valterova I, Unelius CR, Taghizadeh T, Tolasch T, Francke W (2003) (S)-(+)-linalool, a mate attractant pheromone component in the bee Colletes cunicularius. J Chem Ecol 29:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bowen MF (1991) The sensory physiology of host-seeking behaviour in mosquitos. Ann Rev Entomol 36:139–158

    CAS  Google Scholar 

  • Blum MS, Jones TH, Howard DF, Overal WL (1982) Biochemistry of termite defenses—coptotermes, rhinotermes and cornitermes species. Comp Biochem Physiol B 71:731–733

    Article  Google Scholar 

  • Brantjes NBM, Leemans JAAM (1976) Silene otites (Caryophyllaceae) pollinated by nocturnal Lepidoptera and mosquitoes. Acta Bot Neerl 25:281–295

    Google Scholar 

  • Cośśe AA, Todd JL, Millar JG, Martinez LA, Baker TC (1995) Electroantennographic and coupled gas chromatographic–electroantennographic responses of the mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odour. J Chem Ecol 21:1823–1836

    Article  Google Scholar 

  • Cunningham JP, Moore CJ, Zalucki MP, West SW (2004) Learning, odour preference and flower foraging in moths. J Exp Biol 207:87–94

    Article  PubMed  Google Scholar 

  • Dickens JC (1999) Predator–prey interactions: olfactory adaptations of generalist and specialist predators. Agric Forest Entomol 1:47–54

    Article  Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 147–198

    Google Scholar 

  • Dötterl S, Burkhardt D, Weißbecker B, Jürgens A, Schütz S, Mosandl A 2006a. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J Chromatogr A 1113:231–238

    Article  PubMed  CAS  Google Scholar 

  • Dötterl S, Jürgens A, Seifert K, Laube T, Weißbecker B, Schütz S 2006b. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718

    Article  PubMed  Google Scholar 

  • Dougherty MJ, Guerin PM, Ward RD, Hamilton JGC (1999) Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol Entomol 24:251–262

    Article  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Eltz T, Lunau K (2005) Antennal response to fragrance compounds in male orchid bees. Chemoecology 15:135–138

    Article  CAS  Google Scholar 

  • Erbilgin N, Gillette NE, Mori SR, Stein JD, Owen DR, Wood DL (2007) Acetophenone as an anti-attractant for the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). J Chem Ecol 33:817–823

    Article  PubMed  CAS  Google Scholar 

  • Foster WA, Hancock RG (1994) Nectar-related olfactory and visual attractants for mosquitoes. J Am Mosq Control Assoc 10:288–296

    PubMed  CAS  Google Scholar 

  • Fraser AM, Mechaber WL, Hildebrand JG (2003) Electroantennographic and behavioural responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J Chem Ecol 29:1813–1833

    Article  PubMed  CAS  Google Scholar 

  • Geier M, Boeckh J (1999) A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomol Exp Applic 92:9–19

    Article  Google Scholar 

  • Geier M, Bosch OJ, Boeckh J (1999) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648

    PubMed  Google Scholar 

  • Grimstad PR, DeFoliart GR (1974) Nectar sources of Wisconsin mosquitos. J Med Entomol 11:331–341

    PubMed  CAS  Google Scholar 

  • Grimstad PR, DeFoliart GR (1975) Mosquito nectar feeding in Wisconsin in relation to twilight and microclimate. J Med Entomol 11:691–698

    PubMed  CAS  Google Scholar 

  • Han BY, Chen ZM (2002) Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J Agric Food Chem 50:2571–2575

    Article  PubMed  CAS  Google Scholar 

  • Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM (1994) Methyl salicylate and (−)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol 20:2847–2855

    Article  CAS  Google Scholar 

  • Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connetable S, Kuhlemeier C (2005) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 222:141–150

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Ômura H, Hayashi N (1998) Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly, Pieris rapae. J Chem Ecol 24:2167–2180

    Article  CAS  Google Scholar 

  • Howse EP (2003) Insect attractant. European Patent Specification EP 0 838998 B1

  • Ishikawa Y, Ikeshoji T, Matsumoto Y, Tsutsumi M, Mitsui Y (1983) 2-Phenylethanol—an attractant for the onion and seed-corn flies, Hylemya antiqua and Hylemya platura (Diptera: Anthomyiidae). Appl Entomol Zool 18:270–277

    CAS  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495

    Article  PubMed  CAS  Google Scholar 

  • Jepson PC, Healy TP (1988) The location of floral nectar sources by mosquitos: an advanced bioassay for volatile plant odours and initial studies with Aedes aegypti (L) (Diptera: Culicidae). Bull Entomol Res 78:641–650

    Article  Google Scholar 

  • Jhumur U, Dötterl S, Jürgens A (2006) Naïve and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J Med Entomol 43:1164–1170

    Article  PubMed  Google Scholar 

  • Jhumur U, Dötterl S and Jürgens A (2007) Floral odours of Silene otites (Caryophyllaceae): their variability and attractiveness to mosquitoes. J Chem Ecol (in press). doi:10.1007/s10886-007-9392-0

  • Jürgens A, Witt T, Göttsberger G (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397

    Article  Google Scholar 

  • Kawada H, Tatsuta H, Arikawa K, Takagi M (2006) Comparative study on the relationship between photoperiodic host-seeking behavioural patterns and the eye parameters of mosquitoes. J Insect Physiol 52:67–75

    Article  PubMed  CAS  Google Scholar 

  • Kelber A, Pfaff M (1997) Spontaneous and learned preferences for visual flower features in a diurnal hawkmoth. Israel J Plant Sci 45:235–245

    Google Scholar 

  • Kline DL, Bernier UR, Posey KH, Barnard DR (2003) Olfactometric evaluation of spatial repellents for Aedes aegypti. J Med Entomol 40:463–467

    PubMed  CAS  Google Scholar 

  • Lampman RL, Metcalf RL, Andersen JF (1987) Semiochemical attractants of Diabrotica undecimpunctata howardi Barber, southern corn-rootworm, and Diabrotica virgifera virgifera Leconte, the western corn-rootworm (Coleoptera: Chrysomelidae). J Chem Ecol 13:959–975

    Article  CAS  Google Scholar 

  • Landolt PJ, Adams T, Reed HC, Zack RS (2001) Trapping alfalfa looper moths (Lepidoptera: Noctuidae) with single and double component floral chemical lures. Environ Entomol 30:667–672

    Article  CAS  Google Scholar 

  • Lecomte C, Pierre D, Pouzat J, Thibout E (1998) Behavioural and olfactory variations in the leek moth, Acrolepiopsis assectella, after several generations of rearing under diverse conditions. Entomol Exp Applic 86:305–311

    Article  CAS  Google Scholar 

  • Light DM, Kamm JA, Buttery RG (1992) Electroantennogram response of alfalfa seed chalcid, Bruchophagus roddi (Hymenoptera: Eurytomidae) to host-plant and nonhost-plant volatiles. J Chem Ecol 18:333–352

    Article  CAS  Google Scholar 

  • Malo E, Cruz-López L, Toledo J, Mazo AD, Virgen A, Rojas JC (2005) Behavioral and electrophysiological responses of the Mexican fruit fly (Diptera: Tephritidae) to guava volatiles. Florida Entomol 88:364–371

    Article  Google Scholar 

  • Mauer DJ, Rowley WA (1999) Attraction of Culex pipiens pipiens (Diptera: Culicidae) to flower volatiles. J Med Entomol 36:503–507

    PubMed  CAS  Google Scholar 

  • Meagher RL, Mitchell ER (1999) Nontarget hymenoptera collected in pheromone- and synthetic floral volatile-baited traps. Environ Entomol 28:367–371

    Google Scholar 

  • Müller G, Schlein Y (2005) Plant tissues: the frugal diet of mosquitoes in adverse conditions. Med Vet Entomol 19:413–422

    Article  PubMed  Google Scholar 

  • Olsson POC, Anderbrant O, Löfstedt C, Borg-Karlson AK, Liblikas I (2005) Electrophysiological and behavioural responses to chocolate volatiles in both sexes of the pyralid moths Ephestia cautella and Plodia interpunctella. J Chem Ecol 31:2947–2961

    Article  PubMed  CAS  Google Scholar 

  • Olsson POC, Anderbrant O, Lofstedt C (2006) Attraction and oviposition of Ephestia kuehniella induced by volatiles identified from chocolate products. Entomol Exp Applic 119:137–144

    Article  CAS  Google Scholar 

  • Ômura H, Honda K, Hayashi N (2000) Floral scent of Osmanthus fragrans discourages foraging behaviour of cabbage butterfly, Pieris rapae. J Chem Ecol 26:655–666

    Article  Google Scholar 

  • Pettersson J, Pickett JA, Pye BJ, Quiroz A, Smart LE, Wadhams LJ, Woodcock CM (1994) Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Phididae), and other aphids in cereal fields. J Chem Ecol 20:2565–2574

    Article  CAS  Google Scholar 

  • Plepys D, Ibarra F, Löfstedt C (2002) Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74

    Article  CAS  Google Scholar 

  • Pureswaran DS, Borden JH (2004) New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology 14:67–75

    Article  CAS  Google Scholar 

  • Raguso RA, Light DM, Pichersky E (1996) Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J Chem Ecol 22:1735–1766

    Article  CAS  Google Scholar 

  • Reddy GVP, Guerrero A (2000) Behavioural responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata. J Agric Food Chem 48:6025–6029

    Article  PubMed  CAS  Google Scholar 

  • Ruther J, Reinecke A, Thiemann K, Tolasch T, Francke W, Hilker M (2000) Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol Entomol 25:172–179

    Article  CAS  Google Scholar 

  • Ruther J, Reinecke A, Hilker M (2002) Plant volatiles in the sexual communication of Melolontha hippocastani: response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol Entomol 27:76–83

    Article  Google Scholar 

  • Schiestl FP, Marion-Poll F (2001) Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. In: Jackson JF, Linskens HF, Inman RB (eds) Molecular methods of plant analysis 21: analysis of taste and aroma. Springer, Berlin, pp 173–198

    Google Scholar 

  • StatSoft, Inc. (2004) STATISTICA (data analysis software system), Version 7. www.statsoft.com

  • Stoutamire WP (1968) Mosquito pollination of Habenaria obtusata (Orchidaceae). Mich Bot 7:203–212

    Google Scholar 

  • Taylor B (1969) Circadian rhythm of flight activity in mosquitoes (a detailed study of Aedes aegypti and a comparative study of other species in relation to range). Ph.D. Thesis, Brunel University, UK

  • Theis N (2006) Fragrance of canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J Chem Ecol 32:917–927

    Article  PubMed  CAS  Google Scholar 

  • Wei JN, Kang L (2006) Electrophysiological and behavioural responses of a parasitic wasp to plant volatiles induced by two leaf miner species. Chem Senses 31:467–477

    Article  PubMed  CAS  Google Scholar 

  • Weiss MR (2001) Vision and learning in some neglected pollinators, beetles, flies, moths, and butterflies. In: Chittka L, Thompson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge pp, 171–190

    Google Scholar 

  • Zhao YX, Kang L (2002) Role of plant volatiles in host plant location of the leafminer, Liriomyza sativae (Diptera: Agromyzidae). Physiol Entomol 27:103–111

    Article  CAS  Google Scholar 

  • Zhu JW, Park KC (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733–1746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sigrid Liede-Schumann for supporting this study. Taina Witt gave valuable comments on earlier versions of the manuscript. Karlheinz Seifert provided authentic standard compounds. We are grateful to Siju K. Purayil and Majid Ghaninia for providing eggs of Aedes aegypti. The comments of an anonymous reviewer were helpful in improving the manuscript. Umma Salma Jhumur was funded by the German Research Foundation (Research Training Group 678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umma Salma Jhumur.

Additional information

Handling editor: Anna-Karin Borg-Karlson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhumur, U.S., Dötterl, S. & Jürgens, A. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interactions 1, 245–254 (2007). https://doi.org/10.1007/s11829-007-9022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-007-9022-3

Keywords

Navigation