Arthropod-Plant Interactions

, Volume 1, Issue 1, pp 3–16 | Cite as

Visual ecology of aphids—a critical review on the role of colours in host finding

  • Thomas Felix Döring
  • Lars Chittka
Review Paper


We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring.


Aphid Aphididae Autumn colouration Behaviour Colour Colour opponency Hemiptera Host finding Pest control Vision 



During the writing of this article, TFD was supported by a fellowship within the Postdoc-Programme of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG).


  1. A’Brook J (1973) Observations on different methods of aphid trapping. Ann Appl Biol 74:263–277Google Scholar
  2. Adlerz WC, Everett PH (1968) Aluminum foil and white polyethylene mulches to repel aphids and control watermelon mosaic. J Econ Entomol 61:1276–1279Google Scholar
  3. Archetti M, Leather SR (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos 110:339–343Google Scholar
  4. Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298Google Scholar
  5. Auclair JL (1967) Effects of light and sugars on rearing the cotton aphid, Aphis gossypii, on a germ-free and holidic diet. J Insect Physiol 13:1247–1268Google Scholar
  6. Baldy C, Rabasse J-M (1983) Caractéristiques spectrales de pièges jaunes utilisés pour la capture des aphides. Agronomie 3:161–166Google Scholar
  7. Bauer-Dubau K, Scheurer S (1993) First reports of honey-dew-producing aphids (Aphidina: (Lachnidae)) on conifers, their prefered locations and abundance during 1992 in “Botanischer Garten Berlin”. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie (Germany) 9:715–719Google Scholar
  8. Bigler F, Waldburger M, Frei G (1995) Vier Maisanbauverfahren 1990–1993—Krankheiten und Schädlinge. Agrarforschung 2(9):380–382Google Scholar
  9. Boiteau G (1990) Effect of trap color and size on relative efficiency of water-pan traps for sampling alate aphids (Homoptera: Aphididae) on potato. J Econ Entomol 83:937–942Google Scholar
  10. Briscoe A, Chittka L (2001) Evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedGoogle Scholar
  11. Broadbent L (1949) Factors affecting the activity of alatae of the aphids Myzus persicae (Sulzer) and Brevicoryne brassicae (L.). Ann Appl Biol 36:40–62PubMedGoogle Scholar
  12. Brown MW, Gleen DM, Wisiniewski ME (1991) Functional and anatomical disruption of apple roots by the woolly apple aphid (Homoptera : Aphididae). J Econ Entomol 84:1823–1826Google Scholar
  13. Brust GE (2000) Reflective and black mulch increase yield in pumpkins under virus disease pressure. J Econ Entomol 93:828–833PubMedGoogle Scholar
  14. Budnik K, Laing MD, da Graça JV (1996) Reduction of yield losses in pepper crops caused by Potato Virus Y in KwaZulu-Natal, South Africa, using plastic mulch and yellow sticky traps. Phytoparasitica 24:119–124Google Scholar
  15. Burrows PM, Barnett OW, Zimmerman MT (1983) Color attraction and perception in Macrosiphon euphorbae. Can J Zool 61:202–210CrossRefGoogle Scholar
  16. Campbell CAM (1991) Response of Phorodon humuli to yellow and green hop foliar colours. Entomol Exp Appl 60:95–99Google Scholar
  17. Chapman RF, Bernays EA, Simpson SJ (1981) Attraction and repulsion of the aphid, Cavariella aegopodii by plant odours. J Chem Ecol 7:881–888Google Scholar
  18. Chittka L (1996a) Does bee colour vision predate the evolution of flower colour? Naturwissenschaften 83:136–138Google Scholar
  19. Chittka L (1996b) Optimal sets of color receptors and opponent process for coding of natural objects in insect vision. J Theoret Biol 181:179–196Google Scholar
  20. Chittka L, Waser NM (1997) Why red flowers are not invisible for bees. Israelian J Plant Sci 45:69–183Google Scholar
  21. Chittka L, Wells H (2004) Color vision in bees: mechanisms, ecology and evolution. In: Prete F (ed) How simple nervous systems create complex perceptual worlds. MIT Press, Boston, pp 165–191Google Scholar
  22. Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in hymentoptera. J Compar Physiol A 170:545–563Google Scholar
  23. Daiber CC, Donaldson JMI (1976) Watermelon mosaic virus in vegetable marrows: the effect of aluminium foil on the vector. Phytophylactica 8:85–86Google Scholar
  24. Dartnall HJA, Bowmaker JK, Mollon JD (1983) Human visual pigments: microspectrophotometric results from eyes of seven persons. Proc Royal Soc Lond B 220:115–130Google Scholar
  25. Dickson RC, Laird RF (1966) Aluminum foil to protect melons from watermelon mosaic virus. Plant Disease Rep 50:305Google Scholar
  26. Dilawari VK, Atwal AS (1989) Response of mustard aphid Lipaphis erysimi (Kalt.) to allylisothiocyanate. J Insect Sci 2:103–108Google Scholar
  27. Dixon AFG (1971) The life cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi L., and their bearing on the theories of host alternation in aphids. Ann Appl Biol 68:135–147PubMedGoogle Scholar
  28. Dixon AFG (1985) Aphid ecology. Blackie, Glasgow 157 ppGoogle Scholar
  29. Dominy NJ, Lucas PW, Ramsden LW, Riba-Hernandez P, Stoner KE, Turner IM (2002) Why are young leaves red? Oikos 98:163–176Google Scholar
  30. Döring TF, Skorupski P (2007) Host and non-host leaves in the colour space of the colorado potato beetle (Coleoptera: Chrysomelidae). Entomol Gen (in press)Google Scholar
  31. Döring TF, Kirchner SM, Kühne S, Saucke H (2004) Response of alate aphids to green targets on differently coloured backgrounds. Entomol Exp Appl 113:53–62Google Scholar
  32. Dyer A, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Compar Physiol A 191:547–557Google Scholar
  33. Eastop VF (1955) Selection of aphid species by different kinds of insect traps. Nature 176:936Google Scholar
  34. Eulitz EG (1977) Aluminium foil for the control of watermelon mosaic in vegetable marrow. Phytophylactica 9:23–23Google Scholar
  35. Fokkema NJ, Riphagen I, Poot RJ, de Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans Brit Mycol Soc 81:355–363Google Scholar
  36. Goldsmith TH (1991) The evolution of visual pigments and colour vision. In: Gouras P (ed) Vision and visual dysfunction. Macmillan, Houndsmills, UK, pp 62–89Google Scholar
  37. Goldsmith TH (1994) Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms. Vision Res 34:1479–1487PubMedGoogle Scholar
  38. Gonzalez D, Rawlins WA (1968) Aphid sampling efficiency of Möericke Traps affected by height and background. J Econ Entomol 61:109–114Google Scholar
  39. Hamilton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc Roy Soc B 268:1489–1493Google Scholar
  40. Hardie J (1989) Spectral sensitivity for targeted flight in the black bean aphid, Aphis fabae. J Insect Physiol 35:619–626Google Scholar
  41. Hardie J, Nunes MV (2001) Aphid photoperiodic clocks. J Insect Physiol 47:821–832Google Scholar
  42. Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM (1994) Methyl salicylate and (-)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol 20:2847–2855Google Scholar
  43. Hardie J, Storer JR, Cook FJ, Campbell CAM, Wadhams LJ, Lilley R, Peace L (1996) Sex pheromone and visual trap interactions in mate location strategies and aggregation by host alternating-aphids in the field. Physiol Entomol 21:97–106Google Scholar
  44. Heathcote GD (1957) The comparison of yellow cylindrical, flat and water traps, and of Johnson suction traps, for sampling aphids. Ann Appl Biol 45:133–139Google Scholar
  45. Heathcote GD (1968) Protection of sugar beet stecklings against aphids and viruses by cover crops and aluminum foil. Plant Pathol 17:158–161Google Scholar
  46. Hennig E (1963) Zum Probieren oder sogenannten Probesaugen der Schwarzen Bohnenlaus (Aphis fabae Scop.). Entomol Exp Appl 6:326–336Google Scholar
  47. Hermoso A, Pérez E, Carbonell EA, Real V (1998) Comparación de sistemas de captura de áfidos (Homoptera, Aphidinea) en cítricos. Investigación Agraria: Producción y Protección Vegetal 13:121–128Google Scholar
  48. Hodgson CJ, Elbakiet IB (1985) Effect of colour and shape of `target’ hosts on the orientation of emigrating adult apterous Myzus persicae in the laboratory. Entomol Exp Appl 38:267–272Google Scholar
  49. Holopainen JK, Peltonen P (2002) Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99:184–188Google Scholar
  50. Johnson B (1958) Factors affecting the locomotor and settling responses of aphids. Animal Behav 6:9–26Google Scholar
  51. Johnson GV, Bing A, Smith FF (1967) Reflective surfaces used to repel dispersing aphids and reduce spread ot aphid-borne cucumber mosaic virus in gladiolus plantings. J Econ Entomol 60:16–19Google Scholar
  52. Jones FR, Chapman RK (1968) Aluminium foil and other reflective surfaces to manipulate the movement of aphid vectors of plant viruses. Proc Entomol Soc Am, North Central Branch 23:146–148Google Scholar
  53. Judkins WP, Wander IW (1950) Correlation between leaf colour, leaf nitrogen content, and growth of apple, peach and grape plants. Plant Physiol 25:78–85PubMedGoogle Scholar
  54. Karl E (1991) Einsatz einer Saugfalle zur Überwachung der Flugaktivität von Getreideblattläusen (Homoptera Aphidinea: Aphididae). Entomol Gen 16:161–166Google Scholar
  55. Kennedy JS (1950) Aphid migration and the spread of plant viruses. Nature 165:1024–1025PubMedGoogle Scholar
  56. Kennedy JS (1966) The balance between antagonistic induction and depression of flight activity in Aphis fabae Scopoli. J Exp Biol 45:215–228Google Scholar
  57. Kennedy JS, Booth CO, Kershaw WJS (1959a) Host finding by aphids in the field—I. Gynoparae of Myzus persicae (Sulzer). Ann Appl Biol 47:410–423Google Scholar
  58. Kennedy JS, Booth CO, Kershaw WJS (1959b) Host finding by aphids in the field—II. Aphis fabae Scop. (Gynoparae) and Brevicoryne brassicae L.; with a re-appraisal of the role of host-finding behaviour in virus spread. Ann Appl Biol 17:424–444Google Scholar
  59. Kennedy JS, Booth CO, Kershaw WJS (1961) Host finding by aphids in the field—III. Visual attraction. Ann Appl Biol 49:1–21CrossRefGoogle Scholar
  60. Kieckhefer RW, Dickman DA, Miller EL (1976) Color responses of cereal aphids. Ann Entomol Soc Am 69:721–724Google Scholar
  61. Kirchner SM, Döring TF, Saucke H (2005) Evidence for trichromacy in the green peach aphid Myzus persicae (Homoptera: Aphididae). J Insect Physiol 51:1266–1260Google Scholar
  62. Kring JB (1964) New ways to repel aphids. Front Plant Sci 17:6–7Google Scholar
  63. Kring JB (1967) Alighting of aphids on colored cards in a flight chamber. J Econ Entomol 60:1207–1210Google Scholar
  64. Kring JB (1970) Determining the number of aphids over reflective surfaces. J Econ Entomol 63:1350–1353Google Scholar
  65. Kring JB (1972) Flight behaviour of aphids. Annu Rev Entomol 17:461–492Google Scholar
  66. Kumar P, Poehling H-M (2006) UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ Entomol 35:1069–1082CrossRefGoogle Scholar
  67. Lehmhus J (2001) Auswirkungen von Untersaaten in Weißkohlkulturen auf Populationsdynamik der Schadinsekten, die Unkräuter und den Ertrag. PhD-Thesis, University of Hannover, GermanyGoogle Scholar
  68. Liburd OE, Casagrande RA, Alm SR (1998) Evaluation of various color hydromulches and weed fabric on broccoli insect populations. J Econ Entomol 91:256–262Google Scholar
  69. Lin J-T, Hwang P-C, Tung L-C (2002) Visual organization and spectral sensitivity of larval eyes in the moth Trabala vishnou Lefebur (Lepidoptera: Lasiocampidae). Zool Stud 41:366–375Google Scholar
  70. Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford, 244 ppGoogle Scholar
  71. Manetas Y (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163–177Google Scholar
  72. Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates—A: Invertebrate photoreceptors. handbook of sensory physiology, vol VII/6A. Springer-Verlag, Berlin, pp 504–580Google Scholar
  73. Menzel R, Backhaus W (1991) Color vision in insects. In: Gouras P (ed) Vision and visual dysfunction, vol. VI. The perception of colour. MacMillan Press, Houndsmills, pp 262–293Google Scholar
  74. Merzlyak MN, Gitelson AA, Chivkunova OB, Raitkin VYu (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plantarum 106:135–141Google Scholar
  75. Miles PW (1989) Specific responses and damage caused by Aphidoidea. In: Minks AK, Harrewijn P (eds) Aphids—their biology, natural enemies and control. Elsevier, Amsterdam, pp 23–47Google Scholar
  76. Moericke V (1941) Zur Lebensweise der Pfirsichlaus (Myzodes persicae Sulz.) auf der Kartoffel. Inaugural-Disseration Universität Bonn, 101 ppGoogle Scholar
  77. Moericke V (1950) Über das Farbsehen der Pfirsichblattlaus (Myzodes persicae Sulz.). Z Tierpsychol 7:263–274Google Scholar
  78. Moericke V (1951) Eine Farbfalle zur Kontrolle des Fluges von Blattläusen, insbesondere der Pfirsichblattlaus, Myzodes persicae (Sulz.). Nachrichtenblatt des Deutschen Pflanzenschutzdientes 3:23–24Google Scholar
  79. Moericke V (1952) Farben als Landereize für geflügelte Blattläuse (Aphidoidea). Z Naturforschorschung 7b:304–309Google Scholar
  80. Moericke V (1953) Wie finden geflügelte Blattläuse ihre Wirtspflanze? Mitteilungen der Biologischen Zentralanstalt, Berlin Dahlem 75:90–97Google Scholar
  81. Moericke V (1955a) Über die Lebensgewohnheiten der geflügelten Blattläuse (Aphidina) unter besonderer Berücksichtigung des Verhaltens beim Landen. Z Ange Entomol 37:29–91Google Scholar
  82. Moericke V (1955b) Über das Verhalten phytophager Insekten während des Befallsfluges unter dem Einfluß von weißen Flächen. Z Pflanzenkrankh Pflanzensch 62:588–593Google Scholar
  83. Moericke V (1957) Der Flug von Insekten über pflanzenfreien und pflanzenbewachsenen Flächen. Z Pflanzenkrankh Pflanzensch 64:507–514Google Scholar
  84. Moericke V (1969) Hostplant specific colour behaviour by Hyalopterus pruni (Aphididae). Entomol Exp Appl 12:524–534Google Scholar
  85. Moericke V (1979) Nachweis des Farbensehens bei Blattläusen. Publikationen zu Wissenschaftlichen Filmen – Sektion Biologie, Serie 12 (1), Film C (1278) Institut für Wissenschaftlichen Film, Göttingen, 17 ppGoogle Scholar
  86. Moore JB (1937) Reactions of aphids to colored insecticides. J Econ Entomol 30:305–309Google Scholar
  87. Müller HJ (1964) Über die Anflugdichte von Aphiden auf farbige Salatpflanzen. Entomol Exp Appl 7:85–104Google Scholar
  88. Neumeyer C (1981) Chromatic adaptation in the honeybee: Successive color contrast and color constancy. J Compar Physiol A 144:543–553Google Scholar
  89. Nottingham S, Hardie J, Tatchell GM (1991) Flight behaviour of the bird cherry aphid, Rhopalosiphum padi. Physiol Entomol 16:223–229Google Scholar
  90. Park KC, Elias D, Donato B, Hardie J (2000) Electroantennogram and behavioural responses of different forms of the bird cherry-oat aphid, Rhopalosiphum padi, to sex pheromone and a plant volatile. J Insect Physiol 46:597–604PubMedGoogle Scholar
  91. Pelletier Y (1990) The role of the color of the subtratum on the initiation of the probing behavior in Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae). Can J Zool 68:694–698CrossRefGoogle Scholar
  92. Petterson J (1970) Studies on Rhapalosiphum padi (L.) I. Laboratory studies on olfactometric responses to the winter host Prunus padus L. Lantbrukshögskolans Annaler 36:381–399Google Scholar
  93. Pospíšil J (1963) Orientation of Myzodes persicae (Sulz.) to light. Acta Soc Entomol Čechosloveniae 60:94–98Google Scholar
  94. Powell G, Hardie J, Pickett JA (1995) Response of Myzus persicae to the repellent polygodial in choice and no-choice video assays with young and mature leaf tissure. Entomol Exp Appl 74:91–94Google Scholar
  95. Prasad SK, Lal J (2001) Population dynamics of alate mustard aphid, Lipaphis erysimi, and its colour preference. Indian J Entomol 63:285–289Google Scholar
  96. Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364Google Scholar
  97. Rabbinge R, Drees EM, van der Graaf M, Verberne FCM, Wesselo A (1981) Damage effects of cereal aphids in wheat. Netherlands J P1ant Pathol 87:217–232Google Scholar
  98. Rieckmann W, Zahn V (1998) Relationship of aphid flight behaviour and successful potato seed production in the district of the Hannover chamber of agriculture from 1980–1996. Gesunde Pflanzen 50:107–111Google Scholar
  99. Schaefer HM, Rolshausen (2007) Aphids do not attend to leaf colour as visual signal, but to the handicap of reproductive investment. Biol Lett 3:1–4PubMedGoogle Scholar
  100. Serrano L, Filella I, Peñuelas J (2000) Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 40:723–731CrossRefGoogle Scholar
  101. Shull CA (1929) A spectrophotometric study of reflection of light from leaf surfaces. Bot Gazette 87:583–607Google Scholar
  102. Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485PubMedGoogle Scholar
  103. Sinkkonen A (2006) Do autumn leaf colours serve as a reproductive insurance against sucking herbivores? Oikos 113:557–562Google Scholar
  104. Smith J (1976) Influence of crop backgrounds on aphids and other phytophagous insects on Brussels sprouts. Ann Appl Biol 83:1–13Google Scholar
  105. Stadler B, Michalzik B, Müller T (1998) Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525Google Scholar
  106. Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res 33:1011–1017PubMedGoogle Scholar
  107. Sylvester ES (1989) Viruses transmitted by aphids. In: Minks AK, Harrewijn P (eds) Aphids – their biology, natural enemies and control. Elsevier, Amsterdam, pp 65–88Google Scholar
  108. Tamm CO (1951) Seasonal variation in composition of birch leaves. Physiol Plantarum 4:461–469Google Scholar
  109. Thieme T, Steiner H, Busch T (1994) Vergleich der Blattlausfänge in verschiedenen Gelbschalen. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 46:65–68Google Scholar
  110. Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforschung 48c:96–104Google Scholar
  111. Vishnevskaya TM, Shura-Bura TM (1990) Spectral sensitivity of photoreceptors and spectral inputs to the neurons of the first optic ganglion in the locust (Locusta migratoria). In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in arthropods. Birkhäuser Verlag, Basel, pp 387–394Google Scholar
  112. Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:440–452Google Scholar
  113. Wyman JA, Toscano NC, Kido K, Johnson H, Mayberry KS (1979) Effects of mulching on the spread of aphid-transmitted watermelon mosaic virus to summer squash. J Econ Entomol 72:139–143Google Scholar
  114. Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925PubMedGoogle Scholar
  115. Yoltas T, Baspinar H, Aydin AC, Yildirim EM, Economou AS, Read PE (2001) The effect of reflective and black mulches on yield, quality and aphid populations on processing tomato. Acta Horticult 616:267–270Google Scholar
  116. Žďárek J, Pospíšil J (1966) On the visual orientation of Aphis fabae Scop. to coloured lights. Acta Entomol Bohemos 63:17–24Google Scholar

Copyright information

© Springer Science + Business Media BV 2007

Authors and Affiliations

  1. 1.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  2. 2.Aphid Biology Group, Division of Biology, Faculty of Natural SciencesImperial College LondonAscot, BerkshireUK

Personalised recommendations