Skip to main content
Log in

Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase: (Patho)physiological and pharmacotherapeutic importance

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The review highlights the molecular mechanism underlying the physiological effects of nitric oxide (NO), the role of signaling system: NO-soluble guanylate cyclase-cyclic 3′,5′-guanosine monophosphate (cGMP) in the realization of NO action. This review considers data on basic chemical characteristics of guanylate cyclase, such as the subunits structure, isoforms, modern concepts of the catalytic and regulatory centers of this enzyme. Realization of physiological effects of NO by guanylate cyclase depends on its heme prostetic group. NO-dependent activation of guanylate cyclase may be synergistically increased by a new NO-independent, allosteric activator of soluble guanylate cyclase-YC-1-(benzyl indasol derivative). Special attention is paid to the data on guanylate cyclase sites responcible for binding of the enzyme with YC-1 and the possible molecular mechanism underlying the synergistic increase of NO-dependent activation of soluble guanylate cyclase by YC-1. New compounds of endogenous nature capable to potentiate and synergistically increase the activation of guanylate cyclase by NO-donors have been found and investigated. The important physiological, pharmacotherapeutical and pathophysiological significance of this new fact is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmer, R.M.J. and Ashton, D.S., Nature, 1988, vol. 333, pp. 664–666.

    CAS  Google Scholar 

  2. Murad, F., Adv. Pharmacol., 1994, vol. 26, pp. 19–34.

    CAS  Google Scholar 

  3. Severina, I.S., Biochem. Internat., 1988, vol. 17, pp. 265–278.

    CAS  Google Scholar 

  4. Beavo, J.A., Physiol. Rev., 1995, vol. 75, pp. 725–748.

    CAS  Google Scholar 

  5. Hardman, J.G. and Sutherland, E.W., J. Biol. Chem., 1969, vol. 244, pp. 6363–6370.

    CAS  Google Scholar 

  6. Ishikawa, E., Ishikawa, S., Davis, Y.W., and Sutherland, E.W., J. Biol. Chem., 1969, vol. 244, pp. 6371–6376.

    CAS  Google Scholar 

  7. Schultz, G., Bohme, E., and Munske, K., Life Sci., 1969, vol. 8, pp. 1325–1332.

    Google Scholar 

  8. White, A.A. and Aurbach, G.D., Biochim. Biophys Acta, 1969, vol. 191, pp. 686–697.

    CAS  Google Scholar 

  9. Hobbs, A.J., Trends Pharmacol. Sci., 1997, vol. 18, pp. 484–491.

    CAS  Google Scholar 

  10. Furchgott, R.F. and Zawadzki, J.V., Nature, 1980, vol. 288, pp. 373–376.

    CAS  Google Scholar 

  11. Ignarro, L.J., Thromb. Haemost., 1993, vol. 70, pp. 148–151.

    CAS  Google Scholar 

  12. Mc Donald, L.J. and Murad, F., Adv. Pharmacol., 1995, vol. 34, pp. 263–275.

    CAS  Google Scholar 

  13. Arnold, WP., Mittal, C.K., Katzuki, S., and Murad, F., Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 32033207.

    Google Scholar 

  14. Trembley, J., Gerzer, R., and Hamet, P., Adv. Second Messenger Phosphoprotein Res., 1988, vol. 22, pp. 319–389.

    Google Scholar 

  15. Walter, U., Adv. Cycl. Nucl. Protein Phosphoryl. Res., 1984, vol. 17, pp. 249–258.

    CAS  Google Scholar 

  16. Lucas, K.A., Pitari, G.M., Kazerounian, A., Ruitz-Stewart, J., Park, J., Schultz, S., Chepenik, K.P., and Waldman, S.A., Pharmacol. Rev, 2000, vol. 52, pp. 375–413.

    CAS  Google Scholar 

  17. Sevarina, I.S., Vopr Med. Khim., 2002, vol. 48, pp. 330.

    Google Scholar 

  18. Medvedev, A., Bussygina, O., Pyatakova, N., Glover, V., and Severina, I., Biochem. Pharmacol., 2002, vol. 63, pp. 763–766.

    CAS  Google Scholar 

  19. Ignarro, L.J. and Wood, K.S., Biochim. Biophys. Acta, 1987, vol. 928, pp. 160–170.

    CAS  Google Scholar 

  20. Gerzer, R. and Garbers, D.L., Fed. Proc., 1982, vol. 41, pp. 1410–1413.

    Google Scholar 

  21. Graven, R. and De Ruberties, F., Biochim. Biophys. Acta, 1983, vol. 745, pp. 310–321.

    Google Scholar 

  22. Ohlstein, E.H., Wood, K.S., and Ignarro, L.J., Arch. Biochem. Biophys., 1982, vol. 218, pp. 187–198.

    CAS  Google Scholar 

  23. Severina, I.S., Biomed. Khim., 2005, vol. 51, pp. 19–29.

    CAS  Google Scholar 

  24. Wedel, B., Harteneck, C., Foester, J., Friebe, A., Schultz, G., and Kossling, D., J. Biol. Chem., 1995, vol. 270, pp. 24 871–24 875.

    CAS  Google Scholar 

  25. Foester, J., Harteneck, C., Malkewitz, J., Schultz, G., and Koesling, D., Eur J. Biochem., 1996, vol. 240, pp. 380–386.

    Google Scholar 

  26. Koglin, M. and Behrends, S., J. Biol. Chem., 2003, vol. 278, pp. 12590–12597.

    CAS  Google Scholar 

  27. Mayer, B. and Koesling, D., Trends Pharmacol. Sci., 2001, vol. 22, pp. 546–548.

    CAS  Google Scholar 

  28. Zabe, U., Weeger, M., La, M., and Schmidt, H.H.H.W., Biochem. J., 1998, vol. 335, pp. 51–57

    Google Scholar 

  29. Lyer, L.M., Anantharaman, V., and Aravind, L., BMC Genomics, 2003, vol. 4, pp. 5.

    Google Scholar 

  30. Nioche, P., Berka, V., Vipond, J., Minton, N., Tsai, A.L., and Raman, C.S., Science, 2004, vol. 306, pp. 1550–1553.

    CAS  Google Scholar 

  31. Pellicena, P., Karow, D.S., Boon, E.M., and Marletta, M.A., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 12 854–12 859.

    CAS  Google Scholar 

  32. Schmidt, R.M., Schramm, M., Schroder, H., Wunder, F., and Stasch, J.P., J. Biol. Chem., 2004, vol. 279, pp. 3025–3032.

    CAS  Google Scholar 

  33. Wedel, B., Humbert, P., Harteneck, C., Foerster, J., Malkewitz, J., Bohme, E., and Schultz, G., Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2592–2596.

    CAS  Google Scholar 

  34. Friebe, A., Wedel, B., Harteneck, G., Foester, J., Schultz, G., and Koesling, D., Biochemistry, 1997, vol. 36, pp. 1194–1198.

    CAS  Google Scholar 

  35. Chinkers, M. and Garbers, D.L., Science, 1989, vol. 245, pp. 1392–1394.

    CAS  Google Scholar 

  36. Krupinski, J., Coussen, F., Bakalyar, H.A., Tang, WJ., Fainstein, R.G., Orth, K., Slaughter, C., Reed, R.R., and Gilman, A.G., Science, 1989, vol. 244, pp. 1558–1564.

    CAS  Google Scholar 

  37. Thorpe, D.S. and Morkin, E., J. Biol. Chem., 1990, vol. 265, pp. 14717–14720.

    CAS  Google Scholar 

  38. Thorpe, D.S. and Garbers, D.L., J. Biol. Chem., 1989, vol. 264, pp. 6545–6549.

    CAS  Google Scholar 

  39. Wedel, B., Harteneck, C., Foester, J., Friebe, A., Schultz, G., and Koesling, D., J. Biol. Chem., 1995, vol. 270, pp. 24 871–24 875.

    CAS  Google Scholar 

  40. Wilson, E.M. and Chinkers, M., Biochemistry, 1995, vol. 34, pp. 4691–4701.

    Google Scholar 

  41. Knowles, R.J., Palacios, M., Palmer, R.M.J., and Moncada, S., Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 5159–5162.

    CAS  Google Scholar 

  42. Garthwaite, J., Trends Neurosci., 1991, vol. 14, pp. 6067.

    Google Scholar 

  43. Snyder, S.H. and Bredt, D.S., Trends Pharmacol. Sci., 1991, vol. 12, pp. 125–128.

    CAS  Google Scholar 

  44. Hibbs, G.B., Tailor, R.E., and Varvin, Z., Sience, 1987, vol. 235, pp. 473–476.

    CAS  Google Scholar 

  45. Busse, R., Luchoff, A., and Bassenge, E., Naunyn-Schmiebergs. Arch. Pharmacol., 1987, vol. 336, pp. 566–671.

    CAS  Google Scholar 

  46. Ignarro, L.J., Wood, K.S., and Wolin, M.S., Adv. Cycl. Nucl. Protein Phosphoryl. Res., 1984, vol. 17, pp. 267274.

    Google Scholar 

  47. Ignarro, L.J. and Wood, K.S., Biochim. Biophys. Acta, 1987, vol. 928, pp. 160–170.

    CAS  Google Scholar 

  48. Martin, E., Davis, K., Bian, K., Lee, Y C., and Murad, F., Semin. Peritanol., 2000, vol. 24, pp. 2–6.

    CAS  Google Scholar 

  49. Bredt, D.S., Mol. Pharmacol., 2003, vol. 63, pp. 1206–1208.

    CAS  Google Scholar 

  50. Ignarro, L.J., Adams, J.B., Horwitz, PM., and Wood, K.S., J. Biol. Chem., 1986, vol. 261, pp. 4997–5002.

    CAS  Google Scholar 

  51. Stone, J.R. and Marletta, M.A., Biochemistry, 1994, vol. 33, pp. 5636–5640.

    CAS  Google Scholar 

  52. Deninger, J.W. and Marletta, M.A., Biochim. Biophys. Acta, 1999, vol. 144, pp. 334–350.

    Google Scholar 

  53. Ignarro, L.J., Pharmacol. Toxicol., 1990, vol. 67, pp. 1–7.

    CAS  Google Scholar 

  54. Piriochou, A., and Papapetropoulos, A., Cell Signalling, 2005, vol. 17, pp. 407–413.

    Google Scholar 

  55. Brunton, T.L., Lancet, 1867, vol. 185 711, pp. 561–564.

    Google Scholar 

  56. Kotz, A.Ya., Grafov, M.A., Khropov, Yu.V., Betin, V.L., Belushkina, N,N., Bussygina, O.G., Yazykova, M.Yu., Ovchinnikov, I.V., Machova, N.N., Medvedeva, N.A., Bulargina, T.V., and Severina I.S., Br J. Pharmacol., 2000, vol. 129, pp. 1163–1177.

    Google Scholar 

  57. Arzamastsev, A.P., Severina, I.S., Grigor’ev, N.B., and Granik, VG., Vestnik RAMN, 2003, no. 12, pp. 88–95.

    Google Scholar 

  58. Needleman, P., and Johnson, J.R., J. Pharmacol. Exp. Ther, 1973, vol. 184, pp. 709–7

    CAS  Google Scholar 

  59. Buchmuller-Rouiller, Y., and Mauel, J., J. Immunol., 1991, vol. 146, pp. 217–223.

    CAS  Google Scholar 

  60. Munzel, T., Kuiz, S., Heitzer, T., and Harrison, D.G., Am. J. Cardiol., 1996}, vol. 77, pp. 24C–30C.

    CAS  Google Scholar 

  61. Hussain, N.B., Hobbs, A.J., and Macallister, R.J., Br J. Pharmacol., 1999, vol. 128, 1082–1088.

    CAS  Google Scholar 

  62. Straub, A., Stasch, J.P., Alonso-Alija, C., Benet-Buchholts, J., Ducre, B., Feurer, A., and Furstner, C., Bioorg. Med. Chem. Lett., 2001, vol. 11, pp. 781–784.

    CAS  Google Scholar 

  63. Stach, J.P., Becker, E.M., Alonso-Alija, C., Apeler, H., Dembowsky, K., Feurer, A., Gerzer, R., Minuth, T., Perzborn, E., Pleiss, U., Schroder, H., Stahl, E., Steinke, W., Straub, A., and Schramm, M., Nature, 2001, vol. 410, pp. 212–215.

    Google Scholar 

  64. Stasch, J.R., Alonso-Alija, C., Apeler, H., Dembowsky, K., Feurer, A., Minuth, T., Perzborn, E., Schramm, M., and Straub, M., Br J. Pharmacol., 2002, vol. 135, pp. 333–343.

    CAS  Google Scholar 

  65. Stasch, J.P., Dembowsky, K., Perzborn, E., Stahl, E., and Schramm, M., Br J. Pharmacol., 2002, vol. 135, pp. 344–355.

    CAS  Google Scholar 

  66. Ko, EN., Wu, C.C., Kuo, S.C., Lee, F. Y., and Teng, C.M., Blood, 1994, vol. 84, pp. 4220–4233.

    Google Scholar 

  67. Mulsch, A., Bauersachs, J., Schafer, A., Stasch, J.P., Kast, R., and Busse, R., Br J. Pharmacol., 1997, vol. 120, pp. 681–689.

    CAS  Google Scholar 

  68. Rothermund, L., Friebe, A., Paul, M., Koesling, D., and Kreutz, R., Br J. Pharmacol., 2000, vol. 130, pp. 205208.

    Google Scholar 

  69. Friebe, A., Schultz, G., and Koesling, D., EMBO J., 1996, vol. 15, pp. 6863–6868.

    CAS  Google Scholar 

  70. Wu, C.C., Ko, F.N., Kuo, S.C., Lee, F.Y., and Teng, C.M., Br J. Pharmacol., 1995, vol. 116, pp. 1973–1978.

    CAS  Google Scholar 

  71. Foester, J., Harteneck, C., Malkewitz, J., Schultz, G., and Koesling, D., Eur. J. Biochem., 1996, vol. 240, pp. 380–386.

    Google Scholar 

  72. Ignarro, L.J., Wood, K.S., and Wolin, M.S., Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 2870–2873.

    CAS  Google Scholar 

  73. Mayer, B., Brunner, F., and Schmidt, K., Eur. Heart J., 1993, vol. 14 (Suppl.1), pp. 22–26.

    CAS  Google Scholar 

  74. Martin, E., Lee, Y.C., and Murad, F., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 12938–12942

    CAS  Google Scholar 

  75. Mayer, B. and Koesling, D., Trends Pharmacol. Sci., 2001, vol. 22, pp. 546–548.

    CAS  Google Scholar 

  76. Kharitonov, VG., Russwurm, M., Magde, D., Scharma, V.S., and Koesling, D., Biochim. Biophys. Res. Commun., 1997, vol. 239, pp. 284–286.

    CAS  Google Scholar 

  77. Friebe, A. and Koesling, D., Mol. Pharmacol., 1998, vol. 53, pp. 123–127.

    CAS  Google Scholar 

  78. Hoenicka, M., Becker, E.M., Apeler, H., Sirichoke, T., Schroder, H., Gerzer, R., and Stasch, J.R., J. Mol. Med., 1999, vol. 77, pp. 14–23.

    CAS  Google Scholar 

  79. Mergia, E., Mullershausen, F., and Koesling, D., J. Biol. Chem., 2002, vol. 277, pp. 24883–24888.

    Google Scholar 

  80. Cary, S.P., Winger, J.A., and Marletta, M.A., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 13 064–13 069.

    CAS  Google Scholar 

  81. Russwurm, M., and Koesling, D., EMBO J., 2004, vol. 23, pp. 4443–4450.

    CAS  Google Scholar 

  82. Denninger, J., Schelvis, J.P., Brandish, P.E., Zhao, Y., Babcock, G.T., and Marletta, M.A., Biochemistry, 2000, vol. 39, pp. 4191–4198.

    CAS  Google Scholar 

  83. Galle, J., Zabel, U., Hubner, U., Hatzelman, A., Wagner, B., Wanner, C. and Schmidt, H.H., Br J. Pharmacol., 1999, vol. 127, pp. 195–203.

    CAS  Google Scholar 

  84. Hurley, J.H., Curr Opin. Struct. Biol., 1998, vol. 8, pp. 770–777.

    CAS  Google Scholar 

  85. Liu, Y., Ruoho, A.E., Rao, V.D., and Hurley, J. H., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13414–13419.

    CAS  Google Scholar 

  86. Tesmer, J.J., Sunahara, R.K., Gilman, A., and Sprang, S.R., Science, 1997, vol. 278, pp. 1907–1916.

    CAS  Google Scholar 

  87. Friebe, A., Russwurm, M., Mergis, E., and Koesling, D., Biochemistry, 1999, vol. 38, pp. 15253–15257.

    CAS  Google Scholar 

  88. Lamothe, M., Fur-Jung, Change, Balashova, N., Shirokov, R., and Beuve, A., Biochemistry, 2004, vol. 43, pp. 3039–3048.

    CAS  Google Scholar 

  89. Sopkova-De Olivera Santos, J., Collot, V., Bureau, I., and Rault, S., Acta Cristallogr, 2000, vol. C56, pp. 1035–1036.

    Google Scholar 

  90. Chrisman, T.D., Garbers, D.L., Parks, M.A., and Hardman, J.G., J. Biol. Chem., 1975, vol. 250, pp. 374–3

    CAS  Google Scholar 

  91. Yazawa, S., Tsychita, H., and Makino, R., J. Biol. Chem., 2006, vol. 281, pp. 21763–21770.

    CAS  Google Scholar 

  92. Hobbs, A.J., Br J. Pharmacol., 2002, vol. 136, pp. 637–640.

    CAS  Google Scholar 

  93. Flamigni, F., Facchini, A., Stanic, I., Tantini, D., Denavita, F., and Stefano, C., Biochem. Pharmacol., 2001, vol. 62, pp. 319–328.

    CAS  Google Scholar 

  94. Lai, B., Wang, H., Zhan, G., Tian, G., Jao, D., Zhao, J., Liu, J., Duan, L., and Pan, J., Zhonghua Zhong Liu Za Zhi, 1989, vol. 11, pp. 98–100.

    CAS  Google Scholar 

  95. Perachi, M., Toschi, V., Bamonti-Catena, F., Lombardi, L., Baregg, B., Catelezzi, A., Colombi, M., Maiole, A.T., and Polli, E.E., Blood, 1987, vol. 69, pp. 1613–1616.

    Google Scholar 

  96. Schmidt, H.H.H.W., Lohman, S.M., and Walter, U., Biochim. Biophys. Acta, 1993, vol. 1178, pp. 153–175.

    CAS  Google Scholar 

  97. Chawla, R.K., Schlaer, S.M., Lawson, D.H., Murray, T.G., Schmidt, F., Shoji, M., Nixon, D.W., Richmond, A., and Rudman, D., Cancer Res., 1980, vol. 40, pp. 3915–3920.

    CAS  Google Scholar 

  98. Morbidelli, L., Chung-Ho-Chang, Douglas, J.G., Granger, H.J., and Ziche, M., Am. Physiological Society, 1996, vol. H411–H415.

  99. Clo, C., Fantini, B., Pignalli, C., Guarnieri, C., and Calderera, C.M., Adv. Polyamine Res., 1963, vol. 4, pp. 667–681.

    Google Scholar 

  100. Severina, I.S., Pyatakova, N,V., and Shchegolev, A.Yu., Biomed. Khim., 2007, vol. 53, pp. 44–49.

    CAS  Google Scholar 

  101. Severina, I.S., Pyatakova, N,V., Shchegolev, A.Yu., and Ponomarev, G.V., Biochemistry (Moscow), 2006, vol. 71, pp. 426–431.

    Google Scholar 

  102. Ignarro, L.J., Ballot, B., and Wood, K., J. Biol. Chem., 1994, vol. 259, pp. 6201–6207.

    Google Scholar 

  103. Bindoli, A., Deeble, D.J., Rigobello, M.P., and Galzinga, L., Biochim. Biophys. Acta, 1990, vol. 1016, pp. 349–356.

    CAS  Google Scholar 

  104. Bindoli, A., Scutari, G., and Rigobello, M.R., Neurotox. Res., 1999, vol. 1, pp. 71–80.

    CAS  Google Scholar 

  105. Expludes, I.V., and Whittle, B.J., Br. J. Pharmacol., 1989, vol. 97, pp. 185–192.

    Google Scholar 

  106. Dix, T.A., Hess, K.M., Medina, M.A., Sullivan, R.W., Tilly, S.L., and Webb, T.L., Biochemistry, 1996, vol. 35, pp. 4578–4583.

    CAS  Google Scholar 

  107. Salvemini, D., Wang, Z.O., Atern, M.K., Currie, M.G., and Misko, T.P., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2659–2663.

    CAS  Google Scholar 

  108. Volk, T., Gerst, J., Faust-Belbe, G., Stroemann, A., and Kox, WJ},. Inflamm. Res., 1999, vol. 43, pp. 544–549

    Google Scholar 

  109. Saffredini, A.F., From, R.E., Parker, M.M., Brenner, M., Kovags, J.A., Wesley, R.A., and Parrilo, J.E., N. Engl. J. Med., 1989, vol. 321, pp. 280–287.

    Google Scholar 

  110. Macarthure, M., Westfall, TC., Riley, D.R., Misko, T.B., and Salvemini, D., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 9753–9758.

    Google Scholar 

  111. Liang, C.T. and Sacktor, B., J. Cycl. Nucl. Res., 1978, vol. 4, pp. 97–111.

    CAS  Google Scholar 

  112. Laegreid, WW., and Breeze, R.G., Res. Commun. Chem. Pathol. Pharmacol., 1985, vol. 47, pp. 387–397.

    CAS  Google Scholar 

  113. Kong, L.Y., Lang, Q.G., and Qu, Qs., Biomed. Environ. Sci., 1989, vol. 2, pp. 72–77.

    CAS  Google Scholar 

  114. Doggrell, S.A., Curr Opin. Investig. Drugs, 2005, vol. 6, pp. 874–878.

    CAS  Google Scholar 

  115. Varner, PD. and Beckman, J.S., in Nitric oxide in Nervous System, Vincent, S.R., Ed., London: Academ. Press, 1995, pp. 191–206.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Severina.

Additional information

Original Russian Text © I.S. Severina, 2008, published in Biomeditsinskaya Khimiya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severina, I.S. Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase: (Patho)physiological and pharmacotherapeutic importance. Biochem. Moscow Suppl. Ser. B 2, 18–27 (2008). https://doi.org/10.1007/s11828-008-1002-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11828-008-1002-3

Key words

Navigation