Skip to main content

Das Tumorepigenom – von der Genregulation über die Tumorklassifikation zum Therapietarget

The tumor epigenome – from gene regulation via tumor classification to therapy target

Zusammenfassung

Epigenetische Regulationsmechanismen sind essenziell für den koordinierten Ablauf zahlreicher zellulärer Prozesse wie die Differenzierung und Entwicklung oder auch die Anpassung der Genaktivität an die herrschenden Umweltbedingungen. Insbesondere Tumorerkrankungen gehen mit oftmals umfangreichen Alterationen im Epigenom einher. Diese Veränderungen sind dabei vielfach charakteristisch entweder für die Tumorentität, das Stadium der Erkrankung oder aber das klinische Ansprechen des Tumors auf eine Therapie und damit die individuelle Prognose des Patienten. Nach einer kurzen Darstellung epigenetischer Marker und ihrer Bedeutung bei malignen Erkrankungen werden in diesem Artikel Alterationen im Tumorepigenom und ihre Nutzbarkeit im Rahmen einer individualisierten Medizin exemplarisch vorgestellt.

Abstract

Epigenetic control mechanisms are essential for the coordination of numerous cellular processes, including differentiation and development as well as for the adaptation of gene activity according to environmental conditions. In particular, tumor diseases are often accompanied by comprehensive alterations in the epigenome. These alterations are frequently characteristic either for the tumor entity, the tumor state, the clinical response of the tumor to an anti-cancer therapy or the individual prognosis of the patient. After a brief introduction into epigenetic marks and their impact for cancer, this article will focus on alterations in the tumor epigenome and their value for individualized medicine.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Abbott A (2011) Europe to map the human epigenome. Nature 477(7366):518. doi:10.1038/477518a

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Adalsteinsson BT, Ferguson-Smith AC (2014) Epigenetic control of the genome-lessons from genomic imprinting. Genes (Basel) 5(3):635–655. doi:10.3390/genes5030635

    Google Scholar 

  3. 3.

    Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, Teufel A, Herrmann A, Brosch M, Hinrichsen H, Erhart W, Egberts J, Sipos B, Schreiber S, Hasler R, Stickel F, Becker T, Krawczak M, Rocken C, Siebert R, Schafmayer C, Hampe J (2013) DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab 18(2):296–302. doi:10.1016/j.cmet.2013.07.004

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ammerpohl O, Scheufele S, Siebert R (2016) Analyses of epigenetic markers in liquid biopsies: information from beyond the genome. Med Genet 28(2):251–258. doi:10.1007/s11825-016-0093-3

    CAS  Google Scholar 

  5. 5.

    Ammerpohl O, Schmitz A, Steinmüller L, Renkawitz R (1998) Repression of the mouse M‑lysozyme gene involves both hindrance of enhancer factor binding to the methylated enhancer and histone deacetylation. Nucleic Acids Res 26(23):5256–5260

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ammerpohl O, Trauzold A, Schniewind B, Griep U, Pilarsky C, Grutzmann R, Saeger HD, Janssen O, Sipos B, Kloppel G, Kalthoff H (2007) Complementary effects of HDAC inhibitor 4‑PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells. Br J Cancer 96(1):73–81. doi:10.1038/sj.bjc.6603511

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3:7. doi:10.1101/cshperspect.a002592

    Article  Google Scholar 

  8. 8.

    Bauer T, Trump S, Ishaque N, Thurmann L, Gu L, Bauer M, Bieg M, Gu Z, Weichenhan D, Mallm JP, Roder S, Herberth G, Takada E, Mucke O, Winter M, Junge KM, Grutzmann K, Rolle-Kampczyk U, Wang Q, Lawerenz C, Borte M, Polte T, Schlesner M, Schanne M, Wiemann S, Georg C, Stunnenberg HG, Plass C, Rippe K, Mizuguchi J, Herrmann C, Eils R, Lehmann I (2016) Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 12(3):861. doi:10.15252/msb.20156520

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bayarsaihan D (2016) Epigenetic mechanisms involved in modulation of inflammatory diseases. Curr Opin Clin Nutr Metab Care 19(4):263–269. doi:10.1097/MCO.0000000000000281

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485. doi:10.1038/35013100

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bens S, Kolarova J, Beygo J, Buiting K, Caliebe A, Eggermann T, Gillessen-Kaesbach G, Prawitt D, Thiele-Schmitz S, Begemann M, Enklaar T, Gutwein J, Haake A, Paul U, Richter J, Soellner L, Vater I, Monk D, Horsthemke B, Ammerpohl O, Siebert R (2016) Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics 8(6):801–816. doi:10.2217/epi-2016-0007

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Bens S, Kolarova J, Gillessen-Kaesbach G, Buiting K, Beygo J, Caliebe A, Ammerpohl O, Siebert R (2015) The differentially methylated region of MEG8 is hypermethylated in patients with Temple syndrome. Epigenomics 7(7):1089–1097. doi:10.2217/epi.15.73

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Braun CJ, Hemann MT (2016) Rewiring the solid tumor epigenome for cancer therapy. Expert Rev Anticancer Ther 16(9):977–987. doi:10.1080/14737140.2016.1212663

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Caliebe A, Richter J, Ammerpohl O, Kanber D, Beygo J, Bens S, Haake A, Juttner E, Korn B, Mackay DJ, Martin-Subero JI, Nagel I, Sebire NJ, Seidmann L, Vater I, von Kaisenberg CS, Temple IK, Horsthemke B, Buiting K, Siebert R (2014) A familial disorder of altered DNA-methylation. J Med Genet 51(6):407–412. doi:10.1136/jmedgenet-2013-102149

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, Wahl S, Elliott HR, Rota F, Scott WR, Zhang W, Tan ST, Campanella G, Chadeau-Hyam M, Yengo L, Richmond RC, Adamowicz-Brice M, Afzal U, Bozaoglu K, Mok ZY, Ng HK, Pattou F, Prokisch H, Rozario MA, Tarantini L, Abbott J, Ala-Korpela M, Albetti B, Ammerpohl O, Bertazzi PA, Blancher C, Caiazzo R, Danesh J, Gaunt TR, de Lusignan S, Gieger C, Illig T, Jha S, Jones S, Jowett J, Kangas AJ, Kasturiratne A, Kato N, Kotea N, Kowlessur S, Pitkaniemi J, Punjabi P, Saleheen D, Schafmayer C, Soininen P, Tai ES, Thorand B, Tuomilehto J, Wickremasinghe AR, Kyrtopoulos SA, Aitman TJ, Herder C, Hampe J, Cauchi S, Relton CL, Froguel P, Soong R, Vineis P, Jarvelin MR, Scott J, Grallert H, Bollati V, Elliott P, McCarthy MI, Kooner JS (2015) Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3(7):526–534. doi:10.1016/S2213-8587(15)00127-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Chi P, Allis CD, Wang GG (2010) Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469. doi:10.1038/nrc2876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R (2016) Inhibiting DNA Methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 164(5):1073. doi:10.1016/j.cell.2015.10.020

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Choufani S, Shuman C, Weksberg R (2010) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C(3):343–354. doi:10.1002/ajmg.c.30267

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Claus R, Lucas DM, Ruppert AS, Williams KE, Weng D, Patterson K, Zucknick M, Oakes CC, Rassenti LZ, Greaves AW, Geyer S, Wierda WG, Brown JR, Gribben JG, Barrientos JC, Rai KR, Kay NE, Kipps TJ, Shields P, Zhao W, Grever MR, Plass C, Byrd JC (2014) Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood 124(1):42–48. doi:10.1182/blood-2014-02-555722

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cui H (2007) Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers 23(1–2):105–112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. doi:10.1101/gad.2037511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Doose G, Haake A, Bernhart SH, Lopez C, Duggimpudi S, Wojciech F, Bergmann AK, Borkhardt A, Burkhardt B, Claviez A, Dimitrova L, Haas S, Hoell JI, Hummel M, Karsch D, Klapper W, Kleo K, Kretzmer H, Kreuz M, Kuppers R, Lawerenz C, Lenze D, Loeffler M, Mantovani-Loffler L, Moller P, Ott G, Richter J, Rohde M, Rosenstiel P, Rosenwald A, Schilhabel M, Schneider M, Scholz I, Stilgenbauer S, Stunnenberg HG, Szczepanowski M, Trumper L, Weniger MA, Consortium IM-S, Hoffmann S, Siebert R, Iaccarino I (2015) MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells. Proc Natl Acad Sci USA 112(38):E5261–E5270. doi:10.1073/pnas.1505753112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Du Q, Luu PL, Stirzaker C, Clark SJ (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7(6):1051–1073. doi:10.2217/epi.15.39

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Dyke SO, Cheung WA, Joly Y, Ammerpohl O, Lutsik P, Rothstein MA, Caron M, Busche S, Bourque G, Ronnblom L, Flicek P, Beck S, Hirst M, Stunnenberg H, Siebert R, Walter J, Pastinen T (2015) Epigenome data release: a participant-centered approach to privacy protection. Genome Biol 16:142. doi:10.1186/s13059-015-0723-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Eidem TM, Kugel JF, Goodrich JA (2016) Noncoding RNAs: regulators of the mammalian transcription machinery. J Mol Biol 428(12):2652–2659. doi:10.1016/j.jmb.2016.02.019

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV (1996) An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c‑myc oncogenes. Mol Cell Biol 16(6):2802–2813

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, Widom J, Gilad Y, Pritchard JK (2012) Controls of nucleosome positioning in the human genome. Plos Genet 8(11):e1003036. doi:10.1371/journal.pgen.1003036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gu L, Frommel SC, Oakes CC, Simon R, Grupp K, Gerig CY, Bar D, Robinson MD, Baer C, Weiss M, Gu Z, Schapira M, Kuner R, Sultmann H, Provenzano M, Cancer IPo EOP, Yaspo ML, Brors B, Korbel J, Schlomm T, Sauter G, Eils R, Plass C, Santoro R (2015) BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 47(1):22–30. doi:10.1038/ng.3165

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Guasconi V, Souidi M, Ait-Si-Ali S (2005) Nuclear positioning, gene activity and cancer. Cancer Biol Ther 4(2):134–138

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489. doi:10.1038/35013106

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Hassler MR, Schiefer AI, Egger G (2013) Combating the epigenome: epigenetic drugs against non-Hodgkin’s lymphoma. Epigenomics 5(4):397–415. doi:10.2217/epi.13.39

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95(12):6870–6875

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115. doi:10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573. doi:10.1093/infdis/jiv277

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186. doi:10.1038/ng.298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Issa JP (2002) Epigenetic variation and human disease. J Nutr 132(8 Suppl):2388S–2392S

    CAS  PubMed  Google Scholar 

  40. 40.

    Jia Z, Wu X, Cao D, Wang C, You L, Jin M, Wen S, Cao X, Jiang J (2016) Polymorphisms of the DNA Methyltransferase 1 gene predict survival of gastric cancer patients receiving tumorectomy. Dis Markers 2016:8578064. doi:10.1155/2016/8578064

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, Guan W, Xu T, Elks CE, Aslibekyan S, Moreno-Macias H, Smith JA, Brody JA, Dhingra R, Yousefi P, Pankow JS, Kunze S, Shah S, McRae AF, Lohman K, Sha J, Absher DM, Ferrucci L, Zhao W, Demerath EW, Bressler J, Grove ML, Huan T, Liu C, Mendelson MM, Yao C, Kiel DP, Peters A, Wang-Sattler R, Visscher PM, Wray NR, Starr JM, Ding J, Rodriguez CJ, Wareham NJ, Irvin MR, Zhi D, Barrdahl M, Vineis P, Ambatipudi S, Uitterlinden AG, Hofman A, Schwartz J, Colicino E, Hou L, Vokonas PS, Hernandez DG, Singleton AB, Bandinelli S, Turner ST, Ware EB, Smith AK, Klengel T, Binder EB, Psaty BM, Taylor KD, Gharib SA, Swenson BR, Liang L, DeMeo DL, O’Connor GT, Herceg Z, Ressler KJ, Conneely KN, Sotoodehnia N, Kardia SL, Melzer D, Baccarelli AA, van Meurs JB, Romieu I, Arnett DK, Ong KK, Liu Y, Waldenberger M, Deary IJ, Fornage M, Levy D, London SJ (2016) Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. doi:10.1161/CIRCGENETICS.116.001506

    PubMed  Google Scholar 

  42. 42.

    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi:10.1038/nrg816

    CAS  PubMed  Google Scholar 

  43. 43.

    Kao HW, Liang DC, Kuo MC, Wu JH, Dunn P, Wang PN, Lin TL, Shih YS, Liang ST, Lin TH, Lai CY, Lin CH, Shih LY (2015) High frequency of additional gene mutations in acute myeloid leukemia with MLL partial tandem duplication: DNMT3A mutation is associated with poor prognosis. Oncotarget 6(32):33217–33225. doi:10.18632/oncotarget.5202

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Koya J, Kataoka K, Sato T, Bando M, Kato Y, Tsuruta-Kishino T, Kobayashi H, Narukawa K, Miyoshi H, Shirahige K, Kurokawa M (2016) DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat Commun 7:10924. doi:10.1038/ncomms10924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kreck B, Richter J, Ammerpohl O, Barann M, Esser D, Petersen BS, Vater I, Murga Penas EM, Bormann Chung CA, Seisenberger S, Lee Boyd V, Smallwood S, Drexler HG, Macleod RA, Hummel M, Krueger F, Hasler R, Schreiber S, Rosenstiel P, Franke A, Siebert R (2013) Base-pair resolution DNA methylome of the EBV-positive Endemic Burkitt lymphoma cell line DAUDI determined by SOLiD bisulfite-sequencing. Leukemia 27(8):1751–1753. doi:10.1038/leu.2013.4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, Betts MJ, Carrillo-de-Santa-Pau E, Doose G, Gutwein J, Richter J, Hovestadt V, Huang B, Rico D, Juhling F, Kolarova J, Lu Q, Otto C, Wagener R, Arnolds J, Burkhardt B, Claviez A, Drexler HG, Eberth S, Eils R, Flicek P, Haas S, Hummel M, Karsch D, Kerstens HH, Klapper W, Kreuz M, Lawerenz C, Lenze D, Loeffler M, Lopez C, MacLeod RA, Martens JH, Kulis M, Martin-Subero JI, Moller P, Nagel I, Picelli S, Vater I, Rohde M, Rosenstiel P, Rosolowski M, Russell RB, Schilhabel M, Schlesner M, Stadler PF, Szczepanowski M, Trumper L, Stunnenberg HG, project IM-S, project B, Kuppers R, Ammerpohl O, Lichter P, Siebert R, Hoffmann S, Radlwimmer B (2015) DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet 47(11):1316–1325. doi:10.1038/ng.3413

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, Martinez-Trillos A, Castellano G, Brun-Heath I, Pinyol M, Barberan-Soler S, Papasaikas P, Jares P, Bea S, Rico D, Ecker S, Rubio M, Royo R, Ho V, Klotzle B, Hernandez L, Conde L, Lopez-Guerra M, Colomer D, Villamor N, Aymerich M, Rozman M, Bayes M, Gut M, Gelpi JL, Orozco M, Fan JB, Quesada V, Puente XS, Pisano DG, Valencia A, Lopez-Guillermo A, Gut I, Lopez-Otin C, Campo E, Martin-Subero JI (2012) Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 44(11):1236–1242. doi:10.1038/ng.2443

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Kulis M, Merkel A, Heath S, Queiros AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A, Clot G, Verdaguer-Dot N, Duran-Ferrer M, Russinol N, Vilarrasa-Blasi R, Ecker S, Pancaldi V, Rico D, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Pascual M, Agirre X, Prosper F, Alignani D, Paiva B, Caron G, Fest T, Muench MO, Fomin ME, Lee ST, Wiemels JL, Valencia A, Gut M, Flicek P, Stunnenberg HG, Siebert R, Kuppers R, Gut IG, Campo E, Martin-Subero JI (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47(7):746–756. doi:10.1038/ng.3291

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247.e17. doi:10.1016/j.cell.2016.08.056

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. doi:10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  51. 51.

    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478. doi:10.1038/nature10860

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Luo Y, Yu L, Yu T, Jiang F, Cai X, Zhao Y, Pan S, Luo C (2015) The association of DNA methyltransferase 1 gene polymorphisms with susceptibility to childhood acute lymphoblastic leukemia. Biomed Pharmacother 73:35–39. doi:10.1016/j.biopha.2015.05.001

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S, Bruggemann M, Bug S, Calasanz MJ, Deckert M, Dreyling M, Du MQ, Durig J, Dyer MJ, Fan JB, Gesk S, Hansmann ML, Harder L, Hartmann S, Klapper W, Kuppers R, Montesinos-Rongen M, Nagel I, Pott C, Richter J, Roman-Gomez J, Seifert M, Stein H, Suela J, Trumper L, Vater I, Prosper F, Haferlach C, Cruz Cigudosa J, Siebert R (2009) A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLOS ONE 4(9):e6986. doi:10.1371/journal.pone.0006986

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mills AA (2010) Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10(10):669–682. doi:10.1038/nrc2931

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Nakabayashi K, Trujillo AM, Tayama C, Camprubi C, Yoshida W, Lapunzina P, Sanchez A, Soejima H, Aburatani H, Nagae G, Ogata T, Hata K, Monk D (2011) Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes. Hum Mol Genet 20(16):3188–3197. doi:10.1093/hmg/ddr224

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y, de La Chapelle A (2001) Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA 98(2):591–596. doi:10.1073/pnas.011528698

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007. doi:10.1158/1078-0432.CCR-09-0715

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K, Cancer Genome Atlas Research N (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. doi:10.1016/j.ccr.2010.03.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Ntziachristos P, Abdel-Wahab O, Aifantis I (2016) Emerging concepts of epigenetic dysregulation in hematological malignancies. Nat Immunol 17(9):1016–1024. doi:10.1038/ni.3517

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ouchi K, Takahashi S, Yamada Y, Tsuji S, Tatsuno K, Takahashi H, Takahashi N, Takahashi M, Shimodaira H, Aburatani H, Ishioka C (2015) DNA methylation status as a biomarker of anti-epidermal growth factor receptor treatment for metastatic colorectal cancer. Cancer Sci 106(12):1722–1729. doi:10.1111/cas.12827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Poulsen P, Esteller M, Vaag A, Fraga MF (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61(5 Pt 2):38R–42R. doi:10.1203/pdr.0b013e31803c7b98

    Article  PubMed  Google Scholar 

  62. 62.

    Rodriguez J, McKnight JN, Tsukiyama T (2014) Genome-wide analysis of nucleosome positions, occupancy, and accessibility in yeast: nucleosome mapping, high-resolution histone ChIP, and NCAM. Curr Protoc Mol Biol 108:21.28.1–21.28.16. doi:10.1002/0471142727.mb2128s108

    Article  Google Scholar 

  63. 63.

    Roessler J, Ammerpohl O, Gutwein J, Steinemann D, Schlegelberger B, Weyer V, Sariyar M, Geffers R, Arnold N, Schmutzler R, Bartram CR, Heinrich T, Abbas M, Antonopoulos W, Schipper E, Hasemeier B, Kreipe H, Lehmann U (2015) The CpG island methylator phenotype in breast cancer is associated with the lobular subtype. Epigenomics 7(2):187–199. doi:10.2217/epi.14.74

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Romani M, Pistillo MP, Banelli B (2015) Environmental epigenetics: crossroad between public health, lifestyle, and cancer prevention. Biomed Res Int 2015:587983. doi:10.1155/2015/587983

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, O’Brien C, De Carvalho DD (2015) DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162(5):961–973. doi:10.1016/j.cell.2015.07.056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Schniewind B, Heintz K, Kurdow R, Ammerpohl O, Trauzold A, Emme D, Dohrmann P, Kalthoff H (2006) Combination phenylbutyrate/gemcitabine therapy effectively inhibits in vitro and in vivo growth of NSCLC by intrinsic apoptotic pathways. J Carcinog 5:25. doi:10.1186/1477-3163-5-25

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Shafik A, Schumann U, Evers M, Sibbritt T, Preiss T (2016) The emerging epitranscriptomics of long noncoding RNAs. Biochim Biophys Acta 1859(1):59–70. doi:10.1016/j.bbagrm.2015.10.019

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Shen H, Laird PW (2013) Interplay between the cancer genome and epigenome. Cell 153(1):38–55. doi:10.1016/j.cell.2013.03.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Strick R, Strissel PL, Baylin SB, Chiappinelli KB (2016) Unraveling the molecular pathways of DNA-methylation inhibitors: human endogenous retroviruses induce the innate immune response in tumors. Oncoimmunology 5(5):e1122160. doi:10.1080/2162402X.2015.1122160

    Article  PubMed  Google Scholar 

  70. 70.

    Stunnenberg HG, International Human Epigenome C, Hirst M (2016) The international human epigenome consortium: a blueprint for scientific collaboration and discovery. Cell 167(5):1145–1149. doi:10.1016/j.cell.2016.11.007

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028. doi:10.1016/j.cell.2011.08.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Tan Y, Liu H, Chen S (2015) Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse. Front Med 9(4):412–420. doi:10.1007/s11684-015-0423-x

    Article  PubMed  Google Scholar 

  73. 73.

    Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96(15):8681–8686

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Toyota M, Suzuki H (2010) Epigenetic drivers of genetic alterations. Adv Genet 70:309–323. doi:10.1016/B978-0-12-380866-0.60011-3

    CAS  PubMed  Google Scholar 

  75. 75.

    Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483. doi:10.1038/nature10866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Vardabasso C, Hake SB, Bernstein E (2016) Histone variant H2A.Z.2: A novel driver of melanoma progression. Mol Cell Oncol 3(2):e1073417. doi:10.1080/23723556.2015.1073417

    Article  PubMed  Google Scholar 

  77. 77.

    Volle C, Dalal Y (2014) Histone variants: the tricksters of the chromatin world. Curr Opin Genet Dev 25:8–14. doi:10.1016/j.gde.2013.11.006

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    von Deimling A, Huse JT, Yan H, Brat DJ, Reifenberger G, Ohgaki H, Kleihues P (2016) Diffuse astrocytoma, IDH-mutant. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Hrsg) WHO Classification of Tumours of the Central Nervous System, 4. Aufl. IARC, Lyon, S 18–23

    Google Scholar 

  79. 79.

    Wang C, Jia Z, Ma H, Cao D, Wu X, Wen S, You L, Cao X, Jiang J (2015) DNA methyltransferase 3a rs1550117 genetic polymorphism predicts poor survival in gastric cancer patients. Int J Clin Exp Pathol 8(11):14864–14874

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ware CB (2016) Concise review: lessons from naive human pluripotent cells. Stem Cells. doi:10.1002/stem.2507

    PubMed  Google Scholar 

  81. 81.

    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174(4):1149–1153. doi:10.2353/ajpath.2009.080958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793. doi:10.1038/ng1834

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Wellinger RE, Thoma F (1997) Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J 16(16):5046–5056. doi:10.1093/emboj/16.16.5046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Wick W, Platten M, Meisner C, Felsberg J, Tabatabai G, Simon M, Nikkhah G, Papsdorf K, Steinbach JP, Sabel M, Combs SE, Vesper J, Braun C, Meixensberger J, Ketter R, Mayer-Steinacker R, Reifenberger G, Weller M, Society NOASGoN (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13(7):707–715. doi:10.1016/S1470-2045(12)70164-X

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Wiestler B, Capper D, Sill M, Jones DT, Hovestadt V, Sturm D, Koelsche C, Bertoni A, Schweizer L, Korshunov A, Weiss EK, Schliesser MG, Radbruch A, Herold-Mende C, Roth P, Unterberg A, Hartmann C, Pietsch T, Reifenberger G, Lichter P, Radlwimmer B, Platten M, Pfister SM, von Deimling A, Weller M, Wick W (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128(4):561–571. doi:10.1007/s00401-014-1315-x

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Wigler MH (1981) The inheritance of methylation patterns in vertebrates. Cell 24(2):285–286

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Wolffe AP (2000) Transcriptional control: imprinting insulation. Curr Biol 10(12):R463–R465

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Wullner U, Kaut O, deBoni L, Piston D, Schmitt I (2016) DNA methylation in Parkinson’s disease. J Neurochem. doi:10.1111/jnc.13646

    PubMed  Google Scholar 

  89. 89.

    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. doi:10.1056/NEJMoa0808710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152(3):642–654. doi:10.1016/j.cell.2012.12.033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zink LM, Hake SB (2016) Histone variants: nuclear function and disease. Curr Opin Genet Dev 37:82–89. doi:10.1016/j.gde.2015.12.002

    CAS  Article  PubMed  Google Scholar 

Download references

Förderung

Eigene Untersuchungen der Autoren zu epigenetischen Biomarkern werden gefördert aus Mitteln des Bundesministeriums für Bildung und Forschung, Fördernummer 82DZL001A5, der Deutschen Forschungsgemeinschaft (AM343/2-3) sowie der Deutschen Krebshilfe (70112052).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ole Ammerpohl.

Ethics declarations

Interessenkonflikt

O. Ammerpohl, M. Deckert und M. Montesinos-Rongen geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ammerpohl, O., Deckert, M. & Montesinos-Rongen, M. Das Tumorepigenom – von der Genregulation über die Tumorklassifikation zum Therapietarget. medgen 28, 424–434 (2016). https://doi.org/10.1007/s11825-016-0115-1

Download citation

Schlüsselwörter

  • Epigenetik
  • DNA-Methylierung
  • MGMT
  • Tumorepigenom

Keywords

  • Epigenetics
  • DNA methylation
  • MGMT
  • Tumor epigenome