Skip to main content

Neuropädiatrische Differenzialdiagnostik der Mikrozephalie im Kindesalter

Paediatric neurological differential diagnosis of microcephaly in childhood

Zusammenfassung

Eine Mikrozephalie betrifft 2–3 % der Bevölkerung und geht oftmals mit einer Intelligenzminderung einher. Die zugrunde liegende Reduktion des Gehirnvolumens kann sowohl durch exogene Faktoren als auch durch genetische Ursachen bedingt sein. Problematisch sind sowohl die uneinheitliche Klassifikation als auch die große Heterogenität der hinter dem klinischen Zeichen Mikrozephalie stehenden Erkrankungen. Im vorliegenden Artikel stellen wir unseren Vorschlag für die diagnostische Herangehensweise an ein Kind mit Mikrozephalie aus neuropädiatrischer Sicht vor.

Abstract

Microcephaly affects 2–3 % of the population and is often associated with intellectual disability. The underlying reduction in brain volume can result from various exogenous factors or genetic causes. Microcephaly remains a poorly defined condition lacking both uniform diagnostic approaches and classification. A definite etiological diagnosis is the key to predict the prognosis, identify co-morbidities and offer genetic counseling. In addition, the identification of the underlying cause increases our knowledge of brain development and the clinical spectrum of microcephaly. We propose a diagnostic approach for children with microcephaly from a pediatric neurologist point of view.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Opitz JM, Holt MC (1990) Microcephaly: general considerations and aids to nosology. J Craniofac Genet Dev Biol 10(2):175–204

    CAS  PubMed  Google Scholar 

  2. 2.

    Woods CG (2004) Human microcephaly. Curr Opin Neurobiol 14(1):112–117

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ashwal S, Michelson D, Plawner L, Dobyns WB (2009) Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 73(11):887–897

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    von der Hagen M, Pivarcsi M, Liebe J, von Bernuth H, Didonato N, Hennermann JB et al (2014) Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 56(8):732–741

    Article  PubMed  Google Scholar 

  5. 5.

    Pryor HB, Thelander H (1968) Abnormally small head size and intellect in children. J Pediatr 73(4):593–598

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Abuelo D (2007) Microcephaly syndromes. Semin Pediatr Neurol 14(3):118–127

    Article  PubMed  Google Scholar 

  7. 7.

    Leroy JG, Frias JL (2005) Nonsyndromic microcephaly: an overview. Adv Pediatr 52:261–293

    Article  PubMed  Google Scholar 

  8. 8.

    Dekaban AS (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4(4):345–356

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nellhaus G (1968) Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics 41(1):106–114

    CAS  PubMed  Google Scholar 

  10. 10.

    Prader A, Largo RH, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl 52:1–125

    CAS  PubMed  Google Scholar 

  11. 11.

    Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Ellert U, Neuhauser H (2011) German head circumference references for infants, children and adolescents in comparison with currently used national and international references. Acta Paediatr 100(7):e28–33

    Article  PubMed  Google Scholar 

  12. 12.

    Ifflaender S, Rudiger M, Koch A, Burkhardt W (2013) Three-dimensional digital capture of head size in neonates – a method evaluation. PLOS One 8(4):e61274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    McQuillen PS, Miller SP (2010) Congenital heart disease and brain development. Ann N Y Acad Sci 1184:68–86

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Buhrer C, Kaindl AM (2010) Common molecular causes for congenital heart defects and microcephaly. Am J Obstet Gynecol 202(2):e7 (author reply e‑8)

    Article  PubMed  Google Scholar 

  15. 15.

    Barbu D, Mert I, Kruger M, Bahado-Singh RO (2009) Evidence of fetal central nervous system injury in isolated congenital heart defects: microcephaly at birth. Am J Obstet Gynecol 201(1):43 e1–43 e7

    Article  PubMed  Google Scholar 

  16. 16.

    Sells CJ (1977) Microcephaly in a normal school population. Pediatrics 59(2):262–265

    CAS  PubMed  Google Scholar 

  17. 17.

    Stoll C, Alembik Y, Dott B, Roth MP (1997) Congenital eye malformations in 212,479 consecutive births. Ann Genet 40(2):122–128

    CAS  PubMed  Google Scholar 

  18. 18.

    Goyal R, Thompson D, Timms C, Wilson LC, Russell-Eggitt I (2008) Review of cases presenting with microcephaly and bilateral congenital cataract in a paediatric cataract clinic. Eye 22(2):273–281

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wiznitzer M, Rapin I, Van de Water TR (1987) Neurologic findings in children with ear malformations. Int J Pediatr Otorhinolaryngol 13(1):41–55

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    O’Connell EJ, Feldt RH, Stickler GB (1965) Head circumference, mental retardation, and growth failure. Pediatrics 36:62–66

    PubMed  Google Scholar 

  21. 21.

    Watemberg N, Silver S, Harel S, Lerman-Sagie T (2002) Significance of microcephaly among children with developmental disabilities. J Child Neurol 17(2):117–122

    Article  PubMed  Google Scholar 

  22. 22.

    Barmeyer GH (1971) Magic, science, and head circumference. Rocky Mt Med J 68(5):42–44

    CAS  PubMed  Google Scholar 

  23. 23.

    Desch LW, Anderson SK, Snow JH (1990) Relationship of head circumference to measures of school performance. Clin Pediatr (Phila) 29(7):389–392

    CAS  Article  Google Scholar 

  24. 24.

    Smith RD (1981) Abnormal head circumference in learning-disabled children. Dev Med Child Neurol 23(5):626–632

    CAS  PubMed  Google Scholar 

  25. 25.

    Somasundaram O, Papakumari R, Rajeswari R, Vijayalakshmi S (1976) Microcephaly. Indian J Pediatr 43(337):21–27

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Coronado R, Giraldo J, Macaya A, Roig M (2012) Head circumference growth function as a marker of neurological impairment in a cohort of microcephalic infants and children. Neuropediatrics 43(5):271–274

    Article  PubMed  Google Scholar 

  27. 27.

    Dolk H (1991) The predictive value of microcephaly during the first year of life for mental retardation at seven years. Dev Med Child Neurol 33(11):974–983

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Abdel-Salam GM, Halasz AA, Czeizel AE (2000) Association of epilepsy with different groups of microcephaly. Dev Med Child Neurol 42(11):760–767

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Qazi QH, Reed TE (1973) A problem in diagnosis of primary versus secondary microcephaly. Clin Genet 4(1):46–52

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Berg AT, Levy SR, Novotny EJ, Shinnar S (1996) Predictors of intractable epilepsy in childhood: a case-control study. Epilepsia 37(1):24–30

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chawla S, Aneja S, Kashyap R, Mallika V (2002) Etiology and clinical predictors of intractable epilepsy. Pediatr Neurol 27(3):186–191

    Article  PubMed  Google Scholar 

  32. 32.

    Aneja S, Ahuja B, Taluja V, Bhatia VK (2001) Epilepsy in children with cerebral palsy. Indian J Pediatr 68(2):111–115

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    von Spiczak S, Caliebe A, Helbig I, Stephani U (2011) Genetische Ursachen epileptischer Enzephalopathien. Z Epileptol 24:108–113

    Article  Google Scholar 

  34. 34.

    Lemke JR, Bürki SE (2013) Genetik der infantilen epileptischen Enzephalopathien. Epileptologie 30:5–13

    Google Scholar 

  35. 35.

    Deprez L, Jansen A, De Jonghe P (2009) Genetics of epilepsy syndromes starting in the first year of life. Neurology 72(3):273–281

    Article  PubMed  Google Scholar 

  36. 36.

    Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM et al (2011) Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 70(6):974–985

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Mühling J (1995) Kraniofaziale Chirurgie. In: Hausamen EME, Reuther J (Hrsg) Kirschnersche allgemeine und spezielle Operationslehre. Springer, Berlin

    Google Scholar 

  38. 38.

    Marchac D, Renier D (1989) Craniosynostosis. World J Surg 13(4):358–365

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Freudlsperger C, Castrillon-Oberndorfer G, Hoffmann J, Engel M (2013) Isolierte, nichtsyndromale Kraniosynostosen. Aktuelle Diagnostik- und Therapiekonzepte. MKG-Chirurg 6:301–313

    Article  Google Scholar 

  40. 40.

    Jaworski M, Hersh JH, Donat J, Shearer LT, Weisskopf B (1986) Computed tomography of the head in the evaluation of microcephaly. Pediatrics 78(6):1064–1069

    CAS  PubMed  Google Scholar 

  41. 41.

    Steinlin M, Zurrer M, Martin E, Boesch C, Largo RH, Boltshauser E (1991) Contribution of magnetic resonance imaging in the evaluation of microcephaly. Neuropediatrics 22(4):184–189

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Sugimoto T, Yasuhara A, Nishida N, Murakami K, Woo M, Kobayashi Y (1993) MRI of the head in the evaluation of microcephaly. Neuropediatrics 24(1):4–7

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Bodensteiner J, Schaefer GB, Breeding L, Cowan L (1994) Hypoplasia of the corpus callosum: a study of 445 consecutive MRI scans. J Child Neurol 9(1):47–49

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Glass HC, Shaw GM, Ma C, Sherr EH (2008) Agenesis of the corpus callosum in California 1983–2003: a population-based study. Am J Med Genet A 146A(19):2495–2500

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Paul LK (2011) Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement. J Neurodev Disord 3(1):3–27

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wieczorek DBH, Hennermann JB, John R, Bührer C, Kaindl AM (2013) Diagnostik bei Kindern mit primärer Mikrozephalie. Neuropädiatrie Klin Prax 12(1):38–50

    Google Scholar 

  47. 47.

    Bonnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A et al (2014) Diagnostic approach to the congenital muscular dystrophies. Neuromuscular disorders. NMD 24(4):289–311

    PubMed  Google Scholar 

  48. 48.

    Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B et al (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130(10):2725–2735

    Article  PubMed  Google Scholar 

  49. 49.

    Tabatabaie L, Klomp LW, Berger R, de Koning TJ (2010) L‑serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99(3):256–262

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Goldenberg A, Chevy F, Bernard C, Wolf C, Cormier-Daire V (2003) Clinical characteristics and diagnosis of Smith-Lemli-Opitz syndrome and tentative phenotype-genotype correlation: report of 45 cases. Arch Pediatr 10(1):4–10

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Barnerias C, Saudubray JM, Touati G, De Lonlay P, Dulac O, Ponsot G et al (2010) Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol 52(2):e1–9

    Article  PubMed  Google Scholar 

  52. 52.

    van Straaten HL, van Tintelen JP, Trijbels JM, van den Heuvel LP, Troost D, Rozemuller JM et al (2005) Neonatal lactic acidosis, complex I/IV deficiency, and fetal cerebral disruption. Neuropediatrics 36(3):193–199

    Article  PubMed  Google Scholar 

  53. 53.

    Siu VM, Ratko S, Prasad AN, Prasad C, Rupar CA (2010) Amish microcephaly: Long-term survival and biochemical characterization. Am J Med Genet A 152A(7):1747–1751

    Article  PubMed  Google Scholar 

  54. 54.

    Kranz C, Sun L, Eklund EA, Krasnewich D, Casey JR, Freeze HH (2007) CDG-Id in two siblings with partially different phenotypes. Am J Med Genet A 143A(13):1414–1420

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Schollen E, Grunewald S, Keldermans L, Albrecht B, Korner C, Matthijs G (2005) CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter). Eur J Med Genet 48(2):153–158

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Morava E, Vodopiutz J, Lefeber DJ, Janecke AR, Schmidt WM, Lechner S et al (2012) Defining the Phenotype in Congenital Disorder of Glycosylation Due to ALG1 Mutations. Pediatrics 130(4):e1034–e1039

    Article  PubMed  Google Scholar 

  57. 57.

    Morava E, Zeevaert R, Korsch E, Huijben K, Wopereis S, Matthijs G et al (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15(6):638–645

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Chenel C, Wood C, Gourrier E, Zittoun J, Casadevall I, Ogier H (1993) Neonatal hemolytic-uremic syndrome, methylmalonic aciduria and homocystinuria caused by intracellular vitamin B 12 deficiency. Value of etiological diagnosis. Arch Fr Pediatr 50(9):749–754

    CAS  PubMed  Google Scholar 

  59. 59.

    Gailus S, Suormala T, Malerczyk-Aktas AG, Toliat MR, Wittkampf T, Stucki M et al (2010) A novel mutation in LMBRD1 causes the cblF defect of vitamin B(12) metabolism in a Turkish patient. J Inherit Metab Dis 33(1):17–24

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Busche A, Hennermann JB, Burger F, Proquitte H, Dierks T, von Arnim-Baas A et al (2009) Neonatal manifestation of multiple sulfatase deficiency. Eur J Pediatr 168(8):969–973

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Fritchie K, Siintola E, Armao D, Lehesjoki AE, Marino T, Powell C et al (2009) Novel mutation and the first prenatal screening of cathepsin D deficiency (CLN10). Acta Neuropathol 117(2):201–208

    Article  PubMed  Google Scholar 

  62. 62.

    Mayatepek E, Flock B (1998) Leukotriene C4-synthesis deficiency: a new inborn error of metabolism linked to a fatal developmental syndrome. Lancet 352(9139):1514–1517

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Ben-Salem S, Gleeson JG, Al-Shamsi AM, Islam B, Hertecant J, Ali BR et al (2015) Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay. Metab Brain Dis 30(3):687–694

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Alfadhel M, Alrifai MT, Trujillano D, Alshaalan H, Othaim AA, Rasheed AS et al (2015) Asparagine Synthetase Deficiency: New Inborn Errors of Metabolism. JIMD Rep 22:11–16

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Carmi-Nawi N, Malinger G, Mandel H, Ichida K, Lerman-Sagie T, Lev D (2011) Prenatal brain disruption in molybdenum cofactor deficiency. J Child Neurol 26(4):460–464

    Article  PubMed  Google Scholar 

  66. 66.

    Romano C (2010) The clinical evaluation of patients with mental retardation/intellectual disability. In: Knight SJL (Hrsg) Genetics of Mental Retardation, 18. Aufl. Karger, Basel, S 57–66

    Chapter  Google Scholar 

  67. 67.

    Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al (2011) A copy number variation morbidity map of developmental delay. Nat Genet 43(9):838–846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–764

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Shoukier M, Klein N, Auber B, Wickert J, Schroder J, Zoll B et al (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83(1):53–65

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L, Zwirner A et al (2010) Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 90(3):363–383

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Kraemer N, Issa L, Hauck SC, Mani S, Ninnemann O, Kaindl AM (2011) What’s the hype about CDK5RAP2? Cell Mol Life Sci 68(10):1719–1736

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Kraemer NM-RD, Kaindl AM (2013) Primäre autosomal-rezessive Mikrozephalie (MCPH). Neuropädiatrie Klin Prax 1(1):5–12

    Google Scholar 

  73. 73.

    Kaindl AM (2014) Autosomal recessive primary microcephalies (MCPH). Eur J Paediatr Neurol 18(4):547–548

    Article  PubMed  Google Scholar 

  74. 74.

    Nagy G, Ackerman SL (2013) Cholesterol metabolism and Rett syndrome pathogenesis. Nat Genet 45(9):965–967

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Huang HS, Allen JA, Mabb AM, King IF, Miriyala J, Taylor-Blake B et al (2012) Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481(7380):185–189

    CAS  Article  PubMed Central  Google Scholar 

  76. 76.

    Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS et al (2004) LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10(7):696–703

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D et al (2013) Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 136(1):90–105

    Article  PubMed  Google Scholar 

  78. 78.

    Saliba E, Favrais G, Gressens P (2007) Neuroprotection of the newborn: from bench to cribside. Seminars Fetal Neonatal Med 12(4):239–240

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angela M. Kaindl.

Ethics declarations

Interessenkonflikt

M. von der Hagen, J.B. Hennermann, H. von Bernuth, R. John, B. Spors und A.M. Kaindl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführte Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

von der Hagen, M., Hennermann, J.B., von Bernuth, H. et al. Neuropädiatrische Differenzialdiagnostik der Mikrozephalie im Kindesalter. medgen 28, 1–14 (2016). https://doi.org/10.1007/s11825-016-0081-7

Download citation

Schlüsselwörter

  • Mikrozephalie
  • Intelligenzminderung
  • Diagnosealgorithmus

Keywords

  • Microcephaly
  • Intellectual disability
  • Diagnostic algorithm