Skip to main content

Hereditäre Optikusatrophien

Hereditary optic neuropathies

Zusammenfassung

Bei hereditären Optikusatrophien werden 2 Untergruppen differenziert: isolierte hereditäre Optikusatrophien und hereditäre Optikusatrophien als Teil von syndromalen Erkrankungen. In der 1. Gruppe ist die Beeinträchtigung des N. opticus typischerweise die einzige Manifestation. Diese Gruppe umfasst insbesondere autosomal-dominante und autosomal-rezessive Optikusatrophien, darüber hinaus auch die mitochondrial vererbte hereditäre Leber-Optikusneuropathie (LHON).

In der 2. Gruppe, die die syndromalen Erkrankungen umfasst, wird eine Vielzahl neurologischer und anderer systemischer Auffälligkeiten beobachtet. Am häufigsten sind hier Veränderungen der mitochondrialen DNA (mtDNA) ursächlich. Weiterhin ist eine Optikusatrophie Symptom von einigen erblichen peripheren Neuropathien bzw. Charcot-Marie-Tooth-Erkrankungen (CMT2A2, CMTX5), hereditären sensorischen Neuropathie Typ 3 (HSAN3), Friedreich-Ataxie, Leukodystrophien, Sphingolipidosen, Zeroidlipofuszinosen und Eisenspeichererkrankungen („neurodegeneration with brain iron accumulation“, NBIA). Im vorliegenden Beitrag werden die zugrundeliegenden genetischen Prädispositionen und die klinischen Phänotypen erläutert.

Abstract

Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders, which can be divided into 2 subgroups: isolated hereditary optic atrophies and optic neuropathies as part of complex disorders. In the first group of isolated hereditary optic neuropathies, optic nerve dysfunction is typically the only manifestation of the disease. This group comprises autosomal dominant, autosomal recessive and X-linked recessive optic atrophy, and the mitochondrial inherited Leber’s hereditary optic neuropathy (LHON). In the second group of complex disorders, various neurologic and other systemic abnormalities are regularly observed. The most frequent cause in this group are mitochondrial DNA (mtDNA) mutations, inherited peripheral neuropathies, Charcot–Marie–Tooth disorders (CMT2A2, CMTX5), hereditary sensory neuropathy type 3 (HSAN3), Friedreich ataxia, leukodystrophies, sphingolipidoses, ceroid-lipofuscinoses, and neurodegeneration with brain iron accumulation (NBIA). In the present article, the clinical phenotypes and underlying genetic predispositions are described.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Biousse V, Newman NJ (2001) Hereditary optic neuropathies. Ophthalmol Clin North Am 14:547–568

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Zuchner S, De Jonghe P, Jordanova A et al (2006) Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol 59:276–281

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Kim HJ, Sohn KM, Shy ME et al (2007) Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5). Am J Hum Genet 81:552–558

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Neuhann T, Rautenstrauss B (2013) Genetic and phenotypic variability of optic neuropathies. Expert Rev Neurother 13:357–367

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Hoyt CS (1980) Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 87:245–251

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Kjer B, Eiberg H, Kjer P, Rosenberg T (1996) Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol Scand 74:3–7

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Newman NJ, Lott MT, Wallace DC (1991) The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am J Ophthalmol 111(6):750–762

    CAS  PubMed  Google Scholar 

  8. 8.

    Alexander C, Votruba M, Pesch UE et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Delettre C, Lenaers G, Griffoin JM et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Nikoskelainen EK, Huoponen K, Juvonen V et al (1996) Ophthalmologic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations. Ophthalmology 103:504–514

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Reynier P, Amati-Bonneau P, Verny C et al (2004) OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J Med Genet 41:e110

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Ayrignac X, Liauzun C, Lenaers G et al (2012) OPA3 -related autosomal dominant optic atrophy and cataract with ataxia and areflexia. Eur Neurol 68:108–110

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Hanein S, Perrault I, Roche O et al (2009) TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am J Hum Genet 84:493–498

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Meyer E, Michaelides M, Tee LJ et al (2010) Nonsense mutation in TMEM126A causing autosomal recessive optic atrophy and auditory neuropathy. Mol Vis 16:650–664

    CAS  PubMed Central  PubMed  Google Scholar 

  15. 15.

    Barrett TG, Bundey SE, Macleod AF (1995) Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346:1458–1463

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Bindoff LA, Desnuelle C, Birch-Machin MA et al (1991) Multiple defects of the mitochondrial respiratory chain in a mitochondrial encephalopathy (MERRF): a clinical, biochemical and molecular study. J Neurol Sci 102:17–24

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Blakely EL, Trip SA, Swalwell H et al (2009) A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch Neurol 66:399–402

    PubMed  Article  Google Scholar 

  18. 18.

    Shoffner JM, Lott MT, Lezza AM et al (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61:931–937

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Rosenberg RN, Chutorian A (1967) Familial opticoacoustic nerve degeneration and polyneuropathy. Neurology 17:827–832

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    CAS  PubMed  Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T.M. Neuhann und B. Rautenstrauss geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T.M. Neuhann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neuhann, T., Rautenstrauss, B. Hereditäre Optikusatrophien. medgen 26, 11–20 (2014). https://doi.org/10.1007/s11825-014-0435-y

Download citation

Schlüsselwörter

  • Hereditäre Leber-Optikusneuropathie
  • Wolfram-Syndrom
  • MERRF-Syndrom
  • Neuronale Ferritinopathie
  • Mitochondriale Erkrankung

Keywords

  • Optic atrophy, hereditary, Leber
  • Wolfram syndrome
  • MERRF syndrome
  • Neuroferritinopathy
  • Mitochondrial disease