Skip to main content

Mosaike im Gehirn des Menschen

Diagnostische Relevanz in der Zukunft?

Mosaicism in the human brain

Possible diagnostic relevance in molecular cytogenetics of the future?

Zusammenfassung

Das gesunde menschliche Gehirn weist ein bemerkenswert hohes Maß an somatischen Zellmosaiken auf. Zum einen ist dies altersassoziiert, und darüber hinaus wurde nachgewiesen, dass stärker ausgeprägte Zellmosaike im Gehirn Grundlage für neurologische und/oder psychiatrische Störungen (z. B. Alzheimer-Krankheit oder Schizophrenie) sind bzw. damit im Zusammenhang stehen. Möglicherweise eröffnen diese neueren Erkenntnisse künftig Anwendungsmöglichkeiten für die klinische Diagnostik, z. B. in Kombination mit neuen Biomarkern. In diesem Zusammenhang könnte eine vielversprechende Perspektive die Erforschung molekularer Signalwege sein, die die Zellen vor Genom- und/oder Chromosomeninstabilität schützen könnten.

Abstract

Recently, the human brain has been found to exhibit high levels of somatic mosaicism. On the one hand this has been shown to be age associated, on the other hand mosaicism in the brain was shown to be a mechanism for neurologic and psychiatric disorders (i. e. Alzheimer’s disease and schizophrenia). Thus, a possibility to use this knowledge for the preclinical diagnosis was proposed. Since correlations between patterns of somatic mosaicism in mitotic cells and in post-mitotic neural cells have been described, one can suggest molecular cytogenetic analysis of somatic genome variations in biopsies to have potential diagnostic importance. Finally, detecting alterations to molecular pathways protecting cells from genome or chromosome instability seems to be another promising way for future diagnostic applications in brain diseases.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1

    Arendt T, Mosch B, Morawski M (2009) Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci 10:1609–1627

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. 2

    Bajić VP, Spremo-Potparević B, Zivković L et al. (2009) The X-chromosome instability phenotype in Alzheimer’s disease: a clinical sign of accelerating aging? Med Hypotheses 73:917–920

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3

    Baillie JK, Barnett MW, Upton KR et al. (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. 4

    Bushman DM, Chun J (2013) The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 24:357–369

    PubMed Central  PubMed  Article  Google Scholar 

  5. 5

    Evrony GD, Cai X, Lee E et al. (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6

    Faggioli F, Wang T, Vijg J, Montagna C. Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet. 2012 Dec 15;21:5246–5253

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7

    Insel TR (2014) Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 19:156–158

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Iourov IY, Vorsanova SG, Liehr T et al. (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18:2656–2669

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34:212–220

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Iourov IY, Vorsanova SG, Voinova VY et al (2013) Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol Cytogenet 6:53

    PubMed Central  PubMed  Article  Google Scholar 

  11. 11

    Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13:477–488

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12

    Iourov IY, Vorsanova SG, Yurov YB (2013) Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res 139:181–188

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Kaushal D, Contos JJ, Treuner K, Yang AH, Kingsbury MA, Rehen SK, McConnell MJ, Okabe M, Barlow C, Chun J (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23:5599–5606

    CAS  PubMed  Google Scholar 

  14. 14

    Kingsbury MA, Friedman B, McConnell MJ et al. (2005) Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci USA 102:6143–6147

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15

    McConnell MJ, Lindberg MR, Brennand KJ et al. (2013) Mosaic copy number variation in human neurons. Science 342:632–637

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16

    Mkrtchyan H, Gross M, Hinreiner S et al. (2010) The human genome puzzle – the role of copy number variation in somatic mosaicism. Curr Genomics 11:426–431

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17

    Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27:6859–6867

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurological disease. Science 341:1237758

    PubMed Central  PubMed  Article  Google Scholar 

  19. 19

    Rajendran RS, Zupanc MM, Lösche A, Westra J, Chun J, Zupanc GK (2007) Numerical chromosome variation and mitotic segregation defects in the adult brain of teleost fish. Dev Neurobiol 67:1334–1347

    PubMed  Article  Google Scholar 

  20. 20

    Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98:13361–13366

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21

    Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, Almeida BS, Kingsbury MA, Cabral KM, McConnell MJ, Anliker B, Fontanoz M, Chun J (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25:2176–2180

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Suberbielle E, Sanchez PE, Kravitz AV et al. (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23

    Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY (2010) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11:440–446

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24

    Yurov YB, Iourov IY, Vorsanova SG et al. (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98:139–147

    PubMed  Article  Google Scholar 

  25. 25

    Yurov YB, Vorsanova SG, Iourov IY et al (2007) Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet 44:521–525

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Danksagung

I.Y. Iourov, S.G. Vorsanova, T. Liehr und Yuri B. Yurov wurden unterstützt durch den DLR/BMBF (RUS 2011–2013) und der Russian Science Foundation (14-15-00411). I.Y. Iourov, S.G. Vorsanova und Yuri B. Yurov durch den RFBR Grant 12-04-00215 (Russian Federation, 2012–2014) sowie I.Y. Iourov durch einen „Grant of the Russian Federation President“ (MD- 4401.2013.7).

Interessenkonflikt

I.Y. Iourov, S.G. Vorsanova, T. Liehr und Yuri B. Yurov geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan Y. Iourov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iourov, I., Vorsanova, S., Liehr, T. et al. Mosaike im Gehirn des Menschen. medgen 26, 342–345 (2014). https://doi.org/10.1007/s11825-014-0010-6

Download citation

Schlüsselwörter

  • Aneuploidy
  • Chromosomeninstabilität
  • Genominstabilität
  • Erkrankungen des Gehirns
  • Neurologische Erkrankungen

Keywords

  • Aneuploidy
  • Chromosome instability
  • Genome instability
  • Brain diseases
  • Neurologic diseases