Skip to main content

Entstehungsmechanismen von Zellmosaiken

Mechanisms for development of cellular mosaicisms

Zusammenfassung

Zellmosaike bilden sich im Zusammenhang mit „nondisjunction“, Translokationen (balanciert oder unbalanciert), nichthomologem „crossing over“ oder sonstigen chromosomalen oder subchromosomalen „rearrangements“ aus, aber auch durch kompletten oder gewebsspezifischen Chimärismus. Am bekanntesten und häufigsten nachgewiesen sind Zellmosaike, die auf Aneuploidien beruhen, während über die Häufigkeit von submikroskopischen, nur molekulargenetisch oder zytogenetisch nachweisbaren, aber niedriggradigen Zellmosaiken nur wenig bekannt ist. Als Grundlage für die Entstehung von Zellmosaiken gelten „Trisomic“- und/oder „Monosomic-rescue“-Vorgänge. Auch „replikative Fehler“ oder „Endoreduplikation“ einzelner oder mehrere Chromosomen, Isochromosomenbildung oder postzygotisches „non-homologous crossing-over“ werden als Entstehungsmechanismen von Zellmosaiken in der Literatur genannt. Insgesamt ist jedoch festzustellen, dass praktisch alle bekannten Modelle zur Mosaikentstehung bislang auf der deskriptiven Ebene verharren. Ein grundlegendes Verständnis über die tatsächlich z. B. beim Trisomic oder Monosomic rescue ablaufenden Vorgänge ist derzeit mangels Daten nicht vorhanden.

Abstract

Cellular mosaicism can arise in connection with nondisjunction, translocation (balanced or unbalanced), non-homologous crossing over, other chromosomal or subchromosomal rearrangements and also by complete or tissue-specific chimerism. Best known and most often registered are cellular mosaics which are due to aneuploidy, whereas very little is known about the frequency of submicroscopic low-grade cellular mosaics which are only detectable at a molecular level and visible cytogenetically. It is thought that cellular mosaicism (aneuploidy) is due to trisomic and/or monosomic rescue. Also replication errors and endoreduplication of single or multiple chromosomes, isochromosome formation or postzygotic non-homologous crossing over are discussed in the literature as being causative for mosaic formation. However, nearly all models available nowadays on how cellular mosaicism is established remain at the descriptive level. A basic understanding of the actual mechanisms and events leading up to e.g. trisomic or monosomic rescue is not yet available due to a lack of data.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1

    Bartsch O, Petersen MB, Stuhlmann I et al (1994) „Compensatory“ uniparental disomy of chromosome 21 in two cases. J Med Genet 31:534–540

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. 2

    Felka T, Lemke J, Lemke C et al (2007) DNA degradation during maturation of erythrocytes – molecular cytogenetic characterization of Howell-Jolly bodies. Cytogenet Genome Res 119:2–8

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Gottlieb B, Beitel LK, Trifiro MA (2001) Somatic mosaicism and variable expressivity. Trends Genet 17:79–82

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Iourov IY, Vorsanova SG, Yurov YB (2008) Chromosomal mosaicism goes global. Mol Cytogenet 1:26

    PubMed Central  PubMed  Article  Google Scholar 

  5. 5

    Shaffer LG, McGowan-Jordan J, Schmid M (Hrsg) (2013) ISCN. An international system for human cytogenetic nomenclature. Karger, Basel

  6. 6

    Kinne RW, Kunisch E, Beensen V et al (2003) Synovial fibroblasts and synovial macrophages from patients with rheumatoid arthritis and other inflammatory joint diseases show chromosomal aberrations. Genes Chromosomes Cancer 38:53–67

    PubMed  Article  Google Scholar 

  7. 7

    Kioussis D (2005) Gene regulation: kissing chromosomes. Nature 435:579–580

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Liehr T (2009) Small supernumerary marker chromosomes (sSMCs): a spotlight on some nomenclature problems. J Histochem Cytochem 57:991–993

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9

    Liehr T (2010) Cytogenetic contribution to uniparental disomy (UPD). Mol Cytogenet 3:8

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10

    Liehr T (2014) Small supernumerary marker chromosomes. http://ssmc-tl.com/sSMC.html. Zugegriffen: 10. April 2014

  11. 11

    Liehr T, Rautenstrauss B, Grehl H et al (1996) Mosaicism for the Charcot-Marie-Tooth disease type 1A duplication suggests somatic reversion. Hum Genet 98:22–28

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Liehr T, Mrasek K, Hinreiner S et al (2007) Small supernumerary marker chromosomes (sSMC) in patients with a 45,X/46,X, + mar karyotype – 17 new cases and a review of the literature. Sex Dev 1:353–362

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Machiela MJ, Chanock SJ (2013) Detectable clonal mosaicism in the human genome. Semin Hematol 50:348–359

    CAS  PubMed  Article  Google Scholar 

  14. 14

    McCormack A, Fan JL, Duesberg M et al (2013) Individual karyotypes at the origins of cervical carcinomas. Mol Cytogenet 6(1):44

    PubMed Central  PubMed  Article  Google Scholar 

  15. 15

    Mkrtchyan H, Gross M, Hinreiner S et al (2010) The human genome puzzle – the role of copy number variation in somatic mosaicism. Curr Genomics 11:426–431

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16

    Morales C, Soler A, Badenas C et al (2009) Reproductive consequences of genome-wide paternal uniparental disomy mosaicism: description of two cases with different mechanisms of origin and pregnancy outcomes. Fertil Steril 92:393.e5-9

    PubMed  Article  Google Scholar 

  17. 17

    Pauli S, Schmidt T, Funke R et al (2012) Discordant phenotype in monozygotic twins with mosaic trisomy 12p in lymphocytes. Eur J Med Genet 55:480–484

    PubMed  Article  Google Scholar 

  18. 18

    Quan F, Janas J, Toth-Fejel S et al (1997) Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. Am J Hum Genet 60:160–165

    CAS  PubMed Central  PubMed  Google Scholar 

  19. 19

    Soler A, Margarit E, Queralt R et al (2000) Paternal isodisomy 13 in a normal newborn infant after trisomy rescue evidenced by prenatal diagnosis. Am J Med Genet 90:291–293

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Vorsanova SG, Kolotii AD, Iourov IY et al (2005) Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase FISH analysis. J Histochem Cytochem 53:375–380

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Weise A, Mrasek K, Klein E, Mulatinho M, Llerena JC Jr, Hardekopf D, Pekova S, Bhatt S, Kosyakova N, Liehr T (2012) Microdeletion and microduplication syndromes. J Histochem Cytochem 60:346–358

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Liehr gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Liehr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liehr, T. Entstehungsmechanismen von Zellmosaiken. medgen 26, 298–301 (2014). https://doi.org/10.1007/s11825-014-0007-1

Download citation

Schlüsselwörter

  • Nondisjunction
  • Crossing over, genetisch
  • Chimärismus
  • „Trisomic rescue“
  • „Monosomic rescue“

Keywords

  • Nondisjunction
  • Crossing over, genetic
  • Chimerism
  • Trisomic rescue
  • Monosomic rescue