Skip to main content

Monogene Ionenkanalerkrankungen des Knochens

Monogenic ion channelopathies of the skeleton

Zusammenfassung

Obwohl Ionenkanäle eher mit der Generierung von Aktionspotenzialen in Verbindung gebracht werden, können sie auch in unterschiedlichster Weise die Entwicklung und Funktion von Knochenzellen und -gewebe beeinflussen, was durch die hier vorgestellten Skeletterkrankungen verdeutlicht werden soll. Jeder der grundlegenden Zelltypen, Chondrozyten, Osteoblasten, Osteozyten, Osteoklasten, kann in die Pathogenese involviert sein und in vielen Fällen ist das Zusammenspiel der verschiedenen zellulären Defekte nicht verstanden. Connexin 43 und TRPV4, 2 der genannten Membranproteine, transportieren v. a. Kalzium und stehen jeweils mit einem Spektrum an Skelettphänotypen in Verbindung. Hierbei scheint Connexin 43 v. a. als Regulator in Osteoblasten und Osteozyten zu fungieren, während TRPV4 eine wichtige Rolle in Chondrozyten spielt. Die anderen beiden Beispiele sind die chloridtransportierenden Proteine ANO5 und ClC-7, deren Defekt die gnathodiaphysäre Dysplasie bzw. die Osteopetrose nach sich zieht. Während die Funktion von ANO5 noch unklar ist, konnte die Funktion von ClC-7 in Osteoklasten detailliert beschrieben werden.

Abstract

Although ion channels are intuitively more related to the generation of action potentials, they can influence skeletal cells, development, and homeostasis in different ways as demonstrated in this review. All major skeletal cell types, chondrocytes, osteoblasts, osteocytes, and osteoclasts, can be involved in the pathogenesis and often the interaction of these different defects is incompletely understood. Connexin 43 and TRPV4, two of the mentioned membrane proteins, predominantly conduct calcium ions and are the basis of a whole spectrum of skeletal phenotypes. While connexin 43 seems to regulate the function of osteoblasts and osteocytes, TRPV4 is crucial for chondrocytes. The other two examples are chloride-transporting membrane proteins ANO5 and ClC-7, which can cause gnathodiaphyseal dysplasia and osteopetrosis, respectively. Whereas the function of ANO5 is largely unknown, the role of ClC-7 in bone resorbing osteoclasts has been investigated in great detail.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Balcerzak M et al (2008) Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 8(1):192–205

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Benichou OD, Laredo JD, Vernejoul MC de (2000) Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 26(1):87–93

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Bolduc V et al (2010) Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 86(2):213–221

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Chalhoub N et al (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9(4):399–406

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Gurley KA et al (2006) Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res 21(8):1238–1247

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hallermann W (1948) Vogelgesicht und Cataracta congenita. Klin Mbl Augenheilkd 113:315–318

    Google Scholar 

  7. 7.

    Henriksen K et al (2004) Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol 164(5):1537–1545

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Hu Y et al (2013) A novel autosomal recessive GJA1 missense mutation linked to craniometaphyseal dysplasia. PLoS One 8(8):e73576

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Kaissi AA et al (2011) Mid-diaphyseal endosteal thickening with subsequent medullary narrowing in a patient with Hallermann-Streiff syndrome. J Clin Med Res 3(6):328–330

    PubMed Central  PubMed  Google Scholar 

  10. 10.

    Kasper D et al (2005) Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Embo J 24(5):1079–1091

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kornak U et al (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104(2):205–215

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kornak U, Mundlos S (2003) Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet 73(3):447–474

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Lange PF et al (2006) ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440(7081):220–223

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Leisle L et al (2011) ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. Embo J 30(11):2140–2152

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Lloyd SE et al (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379(6564):445–449

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Mizuta K et al (2007) Molecular characterization of GDD1/TMEM16E, the gene product responsible for autosomal dominant gnathodiaphyseal dysplasia. Biochem Biophys Res Commun 357(1):126–132

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Muramatsu S et al (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282(44):32158–32167

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Paznekas WA et al (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum Mutat 30(5):724–733

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Schulz P et al (2010) The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect. PLoS One 5(9):e12585

    PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Sobacchi C et al (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9(9):522–536

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Stains JP, et al (2013) Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int (Epub ahead of print)

  23. 23.

    Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4(8):638–649

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Tran TT et al (2014) TMEM16E (GDD1) exhibits protein instability and distinct characteristics in chloride channel/pore forming ability. J Cell Physiol 229(2):181–190

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Tsutsumi S et al (2004) The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am J Hum Genet 74(6):1255–1261

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Villa A et al (2009) Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 84(1):1–12

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Waguespack SG et al (2007) Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab 92(3):771–778

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Warman ML et al (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968

    PubMed  Article  Google Scholar 

  29. 29.

    Watkins M et al (2011) Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22(8):1240–1251

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Weinert S et al (2010) Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Science 328(5984):1401–1403

    CAS  PubMed  Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Stauber, D. Horn und U. Kornak geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. Kornak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stauber, T., Horn, D. & Kornak, U. Monogene Ionenkanalerkrankungen des Knochens. medgen 25, 493–500 (2013). https://doi.org/10.1007/s11825-013-0420-x

Download citation

Schlüsselwörter

  • Kalizumkanäle
  • Chloridkanäle
  • Connexine
  • Chondrodysplasien
  • Osteopetrose

Keywords

  • Calcium channels
  • Chloride channels
  • Connexins
  • Chondrodysplasia
  • Osteopetrosis