Skip to main content
Log in

Genetisches Modell der autosomal-rezessiv erblichen proximalen spinalen Muskelatrophie

Genetic model of autosomal recessive proximal spinal muscular atrophy

  • Schwerpunkt
  • Published:
medizinische genetik

Zusammenfassung

Die proximale infantile und juvenile spinale Muskelatrophie (SMA) ist eine der häufigsten autosomal-rezessive Erbkrankheiten. Man unterteilt die Patienten in 3 Gruppen, SMA Typ I-III, abhängig von der Schwere der Erkrankung (den erreichten Meilensteinen). Das hauptsächlich verantwortliche Gen, das Survival-motor-neuron(SMN1)-Gen, ist auf Chromosom 5 lokalisiert. Während das Normalallel meist mit einer oder 2 SMN1-Kopien vorliegt, sind die Defektallele bei den meisten Patienten von einer Deletion betroffen; bei einigen liegen Punktmutationen vor. Bei den Deletionen wiederum unterscheidet man zwischen einfacher und großer Deletion, die über das SMN1-Gen hinausgeht. Ein homozygotes Auftreten letzterer führt zu pränataler Letalität.

Für die vorliegende Arbeit wurden zahlreiche in der Literatur verfügbare Daten zur SMA Typ I-III zusammengetragen und in ihrer Abhängigkeit in einem genetischen Modell zusammengefasst. So war es möglich, fehlende Parameter zu schätzen, um genauere Aussagen über Genotypen machen zu können. Die einzelnen Allelfrequenzen konnten wie folgt geschätzt werden:

Normalallel b (1 SMN1-Kopie): ≈ 0,9527; Normalallel c (2 SMN1-Kopien): ≈ 0,0362; einfache Deletion a (0 SMN1-Kopien): ≈ 0,0104; Punktmutation d (1 SMN1-Kopie): ≈ 0,0003; große Deletion g (0 SMN1-Kopien): ≈ 0,0004. Die Genhäufigkeit beträgt etwa 1:90 mit einer Heterozygtenfrequenz von 1:46.

Abstract

Proximal spinal muscular atrophy (SMA) is one of the most common autosomal recessive diseases. According to the achieved milestones, SMA is divided into 3 groups: SMA types I–III. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene, which is located on chromosome 5. Wild type alleles usually have one or two SMN1 gene copies, disease alleles may show deletions, large scale deletions, or point mutations.

The proposed genetic model is based on published data on SMA types I–III. The complex genetic model of SMA allows all parameters—even those which have not been assessed so far—to be calculated. The SMN1 allele frequencies included the following: normal allele b (1 copy of SMN1): ≈ 0.9527; normal allele c (2 copies of SMN1): ≈ 0.0362; deletion a (0 copies of SMN1): ≈ 0.0104; point mutation d (1 copy of SMN1): ≈ 0.0003; large scale deletion g (0 copies of SMN1): ≈ 0.0004. The result is a gene frequency of approximately 1:90 and a carrier frequency of about 1:46.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Alias L, Barceló MJ, Gich I et al (2007) Evidence of a segregation ratio distortion of SMN1 alleles in spinal muscular atrophy. Eur J Hum Genet 5:1090–1093

    Article  Google Scholar 

  2. Anhuf D, Eggermann T, Rudnik-Schöneborn S, Zerres K (2003) Determination of SMN1 and SMN2 copy number using TaqMan TM technology. Hum Mutat 22:74–78

    Article  PubMed  CAS  Google Scholar 

  3. Botta A, Tacconelli A, Bagni I et al (2005) Transmission ratio distortion in the spinal muscular atrophy locus:data from 314 prenatal tests. Neurology 65:1631–1635

    Article  PubMed  CAS  Google Scholar 

  4. Bussaglia E, Clermont O, Tizzano E et al (1995) A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Nat Genet 11:335–337

    Article  PubMed  CAS  Google Scholar 

  5. Chang JG, Jong YJ, Huang JM et al (1995) Molecular basis of spinal muscular atrophy in Chinese. Am J Hum Genet 57:1503–1505 (Letters to the editor)

    PubMed  CAS  Google Scholar 

  6. Cobben JM, Steege G van der, Grootscholten P et al (1995) Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet 57:805–808

    PubMed  CAS  Google Scholar 

  7. Cusin V, Clermont O, Gérard B et al (2003) Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet 40:e39

    Article  PubMed  CAS  Google Scholar 

  8. Czeizel A, Hamula J (1989) A Hungarian study on Werdnig-Hoffmann disease. J Med Genet 26:761–763

    Article  PubMed  CAS  Google Scholar 

  9. Darin N, Tulinius M (2000) Neuromuscular disorders in childhood: a descriptive epidemiological study from western Sweden. Neuromuscul Disord 10:1–9

    Article  PubMed  CAS  Google Scholar 

  10. Feldkötter M, Schwarzer V, Wirth R et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Article  PubMed  Google Scholar 

  11. Fried K, Mundel G (1977) High incidence of spinal muscular atrophy type I (Werdnig-Hoffmann disease) in the Karaite community of Israel. Clin Genet 12:250–251

    Article  PubMed  CAS  Google Scholar 

  12. Hahnen E, Forkert R, Marke C et al (1995) Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy:evidence of homozygous deletions of the SMN gene in uneffected individuals. Hum Mol Genet 4:1927–1933

    Article  PubMed  CAS  Google Scholar 

  13. Harada Y, Sutomo R, Sadewa AH et al (2002) Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy:three SMN2 copies fail to rescue some patients from the disease severity. J Neurol 249:1211–1219

    Article  PubMed  CAS  Google Scholar 

  14. Hasanzad M, Golkar Z, Kariminejad R et al (2009) Deletions in the survival motor neuron gene in Iranian patients with spinal muscular atrophy. Ann Acad Med Singapore 38:139–141

    PubMed  Google Scholar 

  15. Hendrickson BC, Donohoe C, Akmaev VR et al (2009) Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet 46:641–644

    Article  PubMed  CAS  Google Scholar 

  16. Jedrzejowska M, Borkowska J, Zimowski J et al (2008) Uneffected patients with a homozygous abscence of the SMN1 gene. Eur J Hum Genet 16:930–934

    Article  PubMed  CAS  Google Scholar 

  17. Jedrzejowska M, Milewski M, Zimowski J et al (2010) Incidence of spinal muscular atrophy in Poland – more frequent than predicted? Neuroepidemiology 34(3):152–157

    Article  PubMed  Google Scholar 

  18. Jedrzejowska M, Wiszniewski W, Zimowski J et al (2005) Application of a rapid non-invasive technique in the molecular diagnosis of spinal muscular atrophy (SMA). Neurol Neurochir Pol 39:89–94

    PubMed  Google Scholar 

  19. Labrum R, Rodda J, Krause A (2007) The molecular basis of spinal muscular atrophy (SMA) in South African black patients. Neuromuscul Disord 17:684–692

    Article  PubMed  CAS  Google Scholar 

  20. Lefebvre S, Bürglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determing gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  21. Liang YH, Chen XL, Yu ZS et al (2009) Deletion analysis of SMN1 and NAIP genes in Southern Chinese children with spinal muscular atrophy. J Zhejiang Univ Sci B 10:29–34

    Article  PubMed  Google Scholar 

  22. Ludvigsson P, Olafsson E, Hauser WA (1999) Spinal muscular atrophy. Incidence in Iceland. Neuroepidemiology 18:265–269

    Article  PubMed  CAS  Google Scholar 

  23. McAndrew PE, Parsons DW, Simard LR et al (1997) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60:1411–1422

    Article  PubMed  CAS  Google Scholar 

  24. Merlini L, Stagni SB, Marri E, Granata C (1992) Epidemiology of neuromuscular disorders in the under-20 population in Bologna Province, Italy. Neuromuscul Disord 2:197–200

    Article  PubMed  CAS  Google Scholar 

  25. Mostacciuolo ML, Danieli GA, Trevisan C et al (1992) Epidemiology of spinal muscular atrophies in a sample of the Italian population. Neuroepidemiology 11:34–38

    Article  PubMed  CAS  Google Scholar 

  26. Ogino S, Wilson RB, Gold B (2004) New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur J Hum Genet 12:1015–1023

    Article  PubMed  CAS  Google Scholar 

  27. Oprea GE, Kröber S, McWhorter ML et al (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524–527

    Article  PubMed  CAS  Google Scholar 

  28. Parsons DW, McAndrew PE, Iannaccone ST et al (1998) Intragenetic telSMN mutations:frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 63:1712–1723

    Article  PubMed  CAS  Google Scholar 

  29. Pascalet-Guidon MJ, Bois E, Feingold J et al (1984) Cluster of acute infantile spinal muscular atrophy (Werdnig-Hoffmann disease) in a limited area of Reunion Island. Clin Genet 26:39–42

    Article  PubMed  CAS  Google Scholar 

  30. Pearn JH (1973) The gene frequency of acute Werdnig-Hoffmann disease (SMA type I). A total population survey in North-East England. J Med Genet 10:260–265

    Article  PubMed  CAS  Google Scholar 

  31. Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ (2004) Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet 130A:307–310

    Article  PubMed  Google Scholar 

  32. Rodrigues NR, Owen N, Talbot K et al (1996) Gene deletions in spinal muscular atrophy. J Med Genet 33:93–96

    Article  PubMed  CAS  Google Scholar 

  33. Simard LR, Rochette C, Semionov A et al (1997) SMNT and NAIP mutations in Canadian families with spinal muscular atrophy (SMA): genotype/phenotype correlations with disease severity. Am J Med Genet 72:51–58

    Article  PubMed  CAS  Google Scholar 

  34. Somerville MJ, Hunter AGW, Aubry HL et al (1997) Clinical application of the molecular diagnosis of spinal muscular atrophy: deletions of neuronal apoptosis inhibitor protein and survival motor neuron genes. Am J Med Genet 69:159–165

    Article  PubMed  CAS  Google Scholar 

  35. Spiegler AW, Hausmanowa-Pertrusewicz I, Borkowska J, Klopocka A (1990) Population data on acute infantile and chronic childhood spinal muscular atrophy in Warsaw. Hum Genet 85:211–214

    Article  PubMed  CAS  Google Scholar 

  36. Sugarman EA, Nagan N, Zhu H et al (2012) Pan-ethic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of > 72400 specimens. Eur J Hum Genet 20:27–32

    Article  PubMed  Google Scholar 

  37. Thieme A, Mitulla B, Schulze F, Spiegler AW (1993) Epidemiological data on Werdnig-Hoffmann disease in Germany (West-Thüringen). Hum Genet 91:295–297

    Article  PubMed  CAS  Google Scholar 

  38. Thieme A, Mitulla B, Schulze F, Spiegler AW (1994) Chronic childhood spinal muscular atrophy in Germany (West-Thüringen)- an epidemiological study. Hum Genet 93:344–346

    Article  PubMed  CAS  Google Scholar 

  39. Velasco E, Valero C, Valero A et al (1996) Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet 5:257–263

    Article  PubMed  CAS  Google Scholar 

  40. Wang CH, Finkel RS, Bertini ES et al (2007) Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 22:1027–1049

    Article  PubMed  Google Scholar 

  41. Wang CH, Xu J, Carter TA et al (1996) Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum Mol Genet 5:359–365

    Article  PubMed  CAS  Google Scholar 

  42. Wirth B, Hahnen E, Morgan K et al (1995) Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Hum Mol Genet 4:1273–1284

    Article  PubMed  CAS  Google Scholar 

  43. Wirth B, Herz M, Wetter A et al (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 64:1340–1356

    Article  PubMed  CAS  Google Scholar 

  44. Zerres K (1989) Klassifikation und Genetik spinaler Muskelatrophien. Thieme-Copythek, Stuttgart

  45. Zerres K, Grimm T, Rudnik-Schöneborn S (2005) Modifikation des Phänotyps der proximalen spinalen Muskelatrophie (SMA) durch die SMN2-Genkopie. Medgen 17:161–165

    CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Langer, S. Rudnik-Schöneborn, K. Zerres und T. Grimm geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, S., Rudnik-Schöneborn, S., Zerres, K. et al. Genetisches Modell der autosomal-rezessiv erblichen proximalen spinalen Muskelatrophie. medgen 25, 337–346 (2013). https://doi.org/10.1007/s11825-013-0402-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11825-013-0402-z

Schlüsselwörter

Keywords

Navigation