Skip to main content

Störungen der männlichen Gonadendifferenzierung

Disorders of male gonal differentiation

Zusammenfassung

Die XY-Gonadendysgenesie ist ein heterogenes Krankheitsbild und kann durch eine Entwicklungsstörung der Urogenitalleiste zur bipotenten Gonade oder durch eine Störung der bipotenten Gonade zum Hoden bedingt sein. Dementsprechend können Gene der frühen Gonadendifferenzierung wie WT1 und SF1 von solchen der Testis-Differenzierung wie SRY, SOX9, DMRT, DAX1, WNT4, DHH, CBX2, TSPYL1, ATRX und ARX unterschieden werden. Bei der kompletten XY-Gonadendysgenesie sind die Müller-Strukuren, aber keine Wolff-Strukturen vorhanden, und es besteht ein hypergonadotroper Hypogonadismus. Bei der partiellen XY-Gonadendysgenesie können Residuen von Müller- und Wolff-Strukturen sowie eine Virilisierung des äußeren Genitales vorhanden sein. In ungefähr einem Drittel der Fälle von XY-Gonadendysgenesie besteht eine syndromale Form, wobei Leitsymptome auf die zugrunde liegende Ursache hinweisen. Mutationen in Genen, die typischerweise zu syndromalen Formen der XY-Gonadendysgenesie führen, können allerdings auch eine nichtsyndromale Form hervorrufen.

Abstract

XY gonadal dysgenesis is characterized by a failure of testis differentiation and can be caused either by disturbed development of the urogenital ridge to the bipotential gonad or by impaired differentiation of the bipotential gonad to testis. Genes responsible for early gonadal development like WT1 and SF1 can be distinguished from genes involved in testis differentiation such as SRY, SOX9, DMRT, DAX1, WNT4, DHH, CBX2, TSPYL1, ATRX and ARX. In complete XY gonadal dysgenesis, Müllerian but no Wolffian structures are present. In partial XY gonadal dysgenesis, remnants of Müllerian and Wolffian ducts can be present and virilization of the external genitalia can take place. In about a third of cases, XY gonadal dysgenesis occurs in a syndromic form. In these syndromic forms, the extragenital phenotypes can indicate the causative genes, but these genes can also cause non-syndromic forms of XY gonadal dysgenesis.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Hughes IA, Houk C, Ahmed SF et al (2006) Consensus statement on management of intersex disorders. J Ped Urol 2:148–162

    Article  CAS  Google Scholar 

  2. 2.

    Röpke A, Pelz AF, Volleth M et al (2004) Sex chromosomal mosaicism in the gonads of patients with gonadal dysgenesis, but normal female or male karyotypes in lymphocytes. Am J Obstet Gynecol 190:1059–1062

    PubMed  Article  Google Scholar 

  3. 3.

    Ledig S, Hiort O, Scherer G et al (2010) Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum Reprod 25:2637–2646

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kreidberg JA, Sariola H, Lornig JM et al (1993) WT1 is required for early kidney development. Cell 74:679–691

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Barbaux S, Niaudet P, Gubler MC et al (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    McTaggert SJ, Algar E, Chow CW et al (2001) Clinical spectrum of Denys-Drash and Frasier syndrome. Pediatr Nephrol 16:335–339

    Article  Google Scholar 

  7. 7.

    Suri M, Kelehan P, O’Neill D et al (2007) WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac and diaphragmatic malformations. Am J Med Genet A 143A:2312–2320

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Viger RS, Mertineit C, Trasler JM, Nemer (1998) Transcription factor GATA-4 is expressed in sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Müllerian inhibiting substance promoter. Development 125:2665–2675

    PubMed  CAS  Google Scholar 

  9. 9.

    Tevosian SG, Albrecht KH, Crispino JD et al (2002) Gonadal differentiation, sex determination and normal Sry expression in mice requires direct interaction between transcription partners GATA4 and FOG2. Development 129:4627–4634

    PubMed  CAS  Google Scholar 

  10. 10.

    Hanley NA, Ball SG, Clement-Jones M et al (1999) Expression of steroidogenic factor 1 and Wilm’s tumour 1 during early human gonadal development and sex determination. Mech Dev 87:175–180

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Achermann JC, Ito M, Ito M et al (1999) A mutation in the gene encoding steroidogenic factor causes sex reversal and adrenal failure in humans. Nat Genet 22:125–126

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Köhler B, Lin L, Ferraz-Souza B de et al (2008) Five novel mutations in steroidogenic factor 1 (SF1, NR5A1) in 46, XY patients with severe underandrogenization but without adrenal insufficiency. Hum Mutat 29:59–64

    PubMed  Article  Google Scholar 

  13. 13.

    Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cameron FJ, Sinclair AH (1997) Mutations in SRY and SOX9: testis-determining genes. Hum Mutat 9:388–395

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Wagner T, Wirth J, Meyer J et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79:1111–1120

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Jakubiczka S, Schröder C, Ullmann R et al (2010) Translocation and deletion around SOX9 in a patient with acampomelic campomelic dysplasia and sex reversal. Sex Dev 4:143–149

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Raymond CS, Shamu CE, Shen MM et al (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391:691–695

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Stumm M, Wieacker P, Kessel-Weiner E et al (2000) Deletion oft he DM-domain gene cluster in a fetus with ring chromosome 9 and sex reversal. Ped Pathol Mol Med 19:415–423

    Article  CAS  Google Scholar 

  19. 19.

    Krentz AD, Murphy MW, Kim S et al (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A 106:22323–22328

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Bardoni B, Zanaria E, Guioli S et al (1994) A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7:497–501

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Meeks JJ, Weiss J, Jameson JL (2003) DAX1 is required for testis determination. Nat Genet 34:32–33

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Jordan BK, Mohammed M, Ching ST et al (2001) Up-regulation of WNT4 signaling and dosage-sensitive sex-reversal in humans. Am J Hum Genet 68:1102–1109

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Wieacker P, Volleth M (2007) WNT4 and RSPO1 are not involved in a case of male-to-female sex reversal and partial duplication of 1p. Sex Dev 1:111–113

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Umehara F, Tate G, Itoh K et al (2000) A novel mutation of desert hedgehog in a patient with partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet 67:1302–1305

    PubMed  CAS  Google Scholar 

  25. 25.

    Canto P, Soderlund D, Reyes E, Mendez JP (2004) Mutations in the Desert hedgehog (DHH) gene in patients with 46, XY complete pure gonadal dysgenesis. J Clin Endocr Metab 89:4480–4483

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Biason-Lauber A, Konrad D, Meyer M et al (2009) Ovaries and female phenotype in a girl with 46, XY karyotype and mutations in the CBX2 gene. Am J Hum Genet 84:658–663

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Puffenberger EG, Hu-Lince D, Parod JM et al (2004) Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc Nat Acad Sci 101:11689–11694

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Vinci G, Brauner R, Tar A et al (2009) Mutations in the TSPYL1 gene associated with 46, XY DSD and male infertility. Fertil Steril 92:1347–1350

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gibbons RJ, Higgs DR (2000) Molecular-clinical spectrum of the ATR-X syndrome. Am J Med Genet A 97:204–212

    Article  CAS  Google Scholar 

  30. 30.

    Kato M, Das S, Petras K et al (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 23:147–159

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Turleau C, DeGrouchy J, Tournade MF et al (1984) Del11p/aniridia complex. Report of three patients and review of 37 observations from the literature. Clin Genet 26:356–362

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Tommerup N, Schempp W, Meinecke P et al (1993) Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CPMD1) to 17q24.3–q25.1. Nat Genet 4:170–174

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Benett CP, Docherty Z, Robbs SA et al (1993) Deletion 9p and sex reversal. J Med Genet 30:518–520

    Article  Google Scholar 

  34. 34.

    Wieacker P, Missbach D, Jakubiczka S et al (1994) Sex reversal in a child with the karyotype 46,XY,dup(1)(p22.3p32.3). Clin Genet 49:271–273

    Article  Google Scholar 

  35. 35.

    Wilkie AOM, Campbell FM, Daubeney P et al (1993) Complete and partial sex reversal associated with terminal deletions of 10q. Reports of two cases and literature review. Am J Med Genet A 46:597–600

    Article  CAS  Google Scholar 

  36. 36.

    Aleck KA, Argueso L, Stone J et al (1999) True hermaphroditism with partial duplication of chromosome 22 and without SRY. Am J Med Genet A 85:2–4

    Article  CAS  Google Scholar 

  37. 37.

    Slavotinek A, Schwarz G, Getty GF et al (1999) Two cases with interstitial deletions of chromosome 2 and sex reversal in one. Am J Med Genet A 86:75–81

    Article  CAS  Google Scholar 

  38. 38.

    Sathya P, Tomkins DJ, Freeman V et al (1999) De novo deletion 12q: report on a patient with 12q24.31–q24.33 deletion. Am J Med Genet A 84:116–119

    Article  CAS  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde finanziell unterstützt von der Europäischen Gemeinschaft (Euro DSD, 201444).

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Wieacker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wieacker, P., Ledig, S. Störungen der männlichen Gonadendifferenzierung. medgen 23, 231–236 (2011). https://doi.org/10.1007/s11825-011-0279-7

Download citation

Schlüsselwörter

  • XY-Gonadendysgenesie
  • Testisdifferenzierung
  • 46,XY-Geschlechtsentwicklungsstörung
  • Virilisierung
  • Hypergonadotroper Hypogonadismus

Keywords

  • XY gonadal dysgenesis
  • Testis differentiation
  • 46, XY disorders of sex development
  • Virilization
  • Hypergonadotropic hypogonadism