Skip to main content

Genetische Risiken der assistierten Reproduktion

Genetic risks of assisted reproduction

Zusammenfassung

Kinderwunschpatienten müssen vor einer Behandlung über die genetischen Risiken individuell beraten werden. Chromosomenanomalien sind für etwa 5% der männlichen Subfertilität verantwortlich. Im Fall einer Azoospermie liegt die Rate bei 15%. Daher sollte bei einer männlichen Subfertilität bei einer Spermienzahl <20 Mio./ml eine Chromosomenanalyse bei beiden Partnern durchgeführt werden, da ein erhöhtes Risiko für genetische Veränderungen besteht. Ein Klinefelter-Syndrom oder eine Robertson-Translokation können für eine männliche Subfertilität verantwortlich sein. Mutationen des CFTR-Gens sowie Veränderungen des Y-Chromosoms findet man gehäuft bei männlicher Subertiltät. Mikrodeletionen treten am häufigsten am langen Arm des Y-Chromosoms auf (Yq) und betreffen Gene, die direkt in die Spermatogenese involviert sind, insbesondere das AZF-Gen.

Bezüglich Schwangerschaftsverlauf und neonatalem Outcome der Kinder müssen Kinderwunschpatienten darüber aufgeklärt werden, dass während der Schwangerschaft und der Geburt häufiger Komplikationen auftreten als nach Spontankonzeption. Das Fehlgeburtsrisiko ist um das 1,3-Fache erhöht, dies ist jedoch vermutlich Folge der Subfertilität sowie weiterer Risikofaktoren, die die Paare mitbringen, und nicht Folge der Therapie. Das Risiko für Schwangerschaftskomplikationen wie Präeklampsie, Wachstumsretardierung und Totgeburt ist ebenfalls erhöht. Zudem ist das Fehlbildungsrisiko sowohl bei der IVF-Therapie als auch bei der ICSI-Therapie um das 1,3-Fache erhöht.

Abstract

Infertility patients have to be counseled about the genetic risks before treatment. Chromosomal anomalies can be found in 5% of subfertile men and in cases of azoospermia the frequency even rises to 15%. Therefore a chromosome analysis should be performed in men with a sperm count <20 million/ml and also in their partners. Klinefelter’s syndrome as well as a Robertsonian translocation can cause male subfertility. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and deletions in the Y chromosome have been described as being more frequent in these cases.

Regarding pregnancy and neonatal outcome of children, patients have to be counseled about the increased risk of complications. The abortion rate is increased by 1.3-fold, although this is most likely caused by the subfertility of the couple and other risk factors and not caused by the therapy. Complications during pregnancy, such as preeclampsia, growth retardation, stillbirth and a low birth weight are more common after assisted reproduction. The incidence of congenital anomalies is increased by 1.3-fold after in vitro fertilization (IVF) as well as after intracytoplasmic sperm injection (ICSI) therapy.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Basso O, Baird DD (2003) Infertility and preterm delivery, birthweight, and Caesarean section: a study within the Danish National Birth Cohort. Hum Reprod 18(11):2478–2484

    PubMed  Article  Google Scholar 

  2. 2.

    Basso O, Weinberg CR, Baird DD et al (2003) Subfecundity as a correlate of preeclampsia: a study within the Danish National Birth Cohort. Am J Epidemiol 157(3):195–202

    PubMed  Article  Google Scholar 

  3. 3.

    Belva F, Henriet S, Van den AE et al (2008) Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod 23(10):2227–2238

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bertsmann H, Carvalho H de, Mund M et al (2008) Fehlbildungsrisiko bei extrakorporaler Befruchtung. Dtsch Ärztebl 105:11–17

    Google Scholar 

  5. 5.

    De Sutter P, Veldeman L, Kok P et al (2005) Comparison of outcome of pregnancy after intra-uterine insemination (IUI) and IVF. Hum Reprod 20(6):1642–1646

    Article  Google Scholar 

  6. 6.

    Edwards RG, Ludwig M (2003) Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage? Reprod Biomed Online 7(2):131–138

    PubMed  Article  Google Scholar 

  7. 7.

    Ferlin A, Raicu F, Gatta V et al (2007) Male infertility: role of genetic background. Reprod Biomed Online 14(6):734–745

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Foresta C, Garolla A, Bartoloni L et al (2005) Genetic abnormalities among severely oligospermic men who are candidates for intracytoplasmic sperm injection. J Clin Endocrinol Metab 90(1):152–156

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fullerton G, Hamilton M, Maheshwari A (2010) Should non-mosaic Klinefelter syndrome men be labelled as infertile in 2009? Hum Reprod 25(3):588–597

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Gaudoin M, Dobbie R, Finlayson A et al (2003) Ovulation induction/intrauterine insemination in infertile couples is associated with low-birth-weight infants. Am J Obstet Gynecol 188(3):611–616

    PubMed  Article  Google Scholar 

  11. 11.

    Georgiou I, Syrrou M, Pardalidis N et al (2006) Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J Androl 8(6):643–673

    PubMed  Article  Google Scholar 

  12. 12.

    Ghazi HA, Spielberger C, Kallen B (1991) Delivery outcome after infertility–a registry study. Fertil Steril 55(4):726–732

    PubMed  CAS  Google Scholar 

  13. 13.

    Griesinger G, Kolibianakis EM, Diedrich K, Ludwig M (2008) Ovarian stimulation for IVF has no quantitative association with birthweight: a registry study. Hum Reprod 23(11):2549–2554

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Groman JD, Hefferon TW, Casals T et al (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74(1):176–179

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Hansen M, Bower C, Milne E et al (2004) Assisted reproductive technologies and the risk of birth defects–a systematic review. Hum Reprod 20:328–388

    PubMed  Article  Google Scholar 

  16. 16.

    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ (2004) Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 328(7434):261

    PubMed  Article  Google Scholar 

  17. 17.

    Henriksen TB, Baird DD, Olsen J et al (1997) Time to pregnancy and preterm delivery. Obstet Gynecol 89(4):594–599

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Horsthemke B, Ludwig M (2005) Assisted reproduction – the epigenetic perspective. Hum Reprod Update 11(5):473–482

    PubMed  Article  Google Scholar 

  19. 19.

    Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103(3):551–563

    PubMed  Article  Google Scholar 

  20. 20.

    Johnson MD (1998) Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: recommendations for genetic counseling and screening. Fertil Steril 70(3):397–411

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kallen B, Finnstrom O, Lindam A et al (2010) Trends in delivery and neonatal outcome after in vitro fertilization in Sweden: data for 25 years. Hum Reprod 25(4):1026–1034

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Klemetti R, Sevon T, Gissler M, Hemminki E (2010) Health of children born after ovulation induction. Fertil Steril 93(4):1157–1168

    PubMed  Article  Google Scholar 

  23. 23.

    Krausz C, Forti G, McElreavey K (2003) The Y chromosome and male fertility and infertility. Int J Androl 26(2):70–75

    PubMed  Article  Google Scholar 

  24. 24.

    Kuroda-Kawaguchi T, Skaletsky H, Brown LG et al (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29(3):279–286

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lazaros L, Xita N, Kaponis A et al (2008) Evidence for association of sex hormone-binding globulin and androgen receptor genes with semen quality. Andrologia 40(3):186–191

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lazaros LA, Xita NV, Kaponis AI et al (2010) Estrogen receptor alpha and beta polymorphisms are associated with semen quality. J Androl 31(3):291–298

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Ludwig AK, Katalinic A, Entenmann A et al (2009) Can we sense ART? The blinded examiner is not blind-a problem with follow-up studies on children born after assisted reproduction. Fertil Steril 92(3):950–952

    PubMed  Article  Google Scholar 

  28. 28.

    Ludwig M, Gromoll J, Hehr U, Wieacker P (2004) Stellungnahme der Arbeitsgemeinschaft Reproduktionsgenetik der Deutschen Gesellschaft für Reproduktionsmedizin: Empfehlung zur genetischen Diagnostik bei Kinderwunschpaaren. J Reproduktionsmed Endokrinol 1(3):190–193

    Google Scholar 

  29. 29.

    Ludwig M, Katalinic A, Groß S et al (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 35(Database issue):D26–D31

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Meschede D, Lemcke B, Exeler JR et al (1998) Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection–prevalence, types, sex distribution and reproductive relevance. Hum Reprod 13(3):576–582

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Nuojua-Huttunen S, Gissler M, Martikainen H, Tuomivaara L (1999) Obstetric and perinatal outcome of pregnancies after intrauterine insemination. Hum Reprod 14(8):2110–2115

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Nuti F, Krausz C (2008) Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 16(4):504–513

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    O’Flynn O’Brien KL, Varghese AC, Agarwal A (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93(1):1–12

    Article  Google Scholar 

  35. 35.

    Pandian Z, Bhattacharya S, Templeton A (2001) Review of unexplained infertility and obstetric outcome: a 10 year review. Hum Reprod 16(12):2593–2597

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Peschka B, Leygraaf J, Montag M V van d et al (1999) Type and frequency of chromosome aberrations in 781 couples undergoing intracytoplasmic sperm injection. Hum Reprod 14(9):2257–2263

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Pezeshki K, Feldman J, Stein DE et al (2000) Bleeding and spontaneous abortion after therapy for infertility. Fertil Steril 74(3):504–508

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Pinborg A, Loft A, Aris Henningsen AK et al (2009) Infant outcome of 957 singletons born after frozen embryo replacement: The Danish National Cohort Study 1995–2006. Fertil Steril 30

  39. 39.

    Reubinoff BE, Abeliovich D, Werner M et al (1998) A birth in non-mosaic Klinefelter’s syndrome after testicular fine needle aspiration, intracytoplasmic sperm injection and preimplantation genetic diagnosis. Hum Reprod 13(7):1887–1892

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Romundstad LB, Romundstad PR, Sunde A et al (2008) Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet 372:737–343

    PubMed  Article  Google Scholar 

  41. 41.

    Ron-El R, Strassburger D, Gelman-Kohan S et al (2000) A 47,XXY fetus conceived after ICSI of spermatozoa from a patient with non-mosaic Klinefelter’s syndrome: case report. Hum Reprod 15(8):1804–1806

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Scholtes MC, Behrend C, Dietzel-Dahmen J et al (1998) Chromosomal aberrations in couples undergoing intracytoplasmic sperm injection: influence on implantation and ongoing pregnancy rates. Fertil Steril 70(5):933–937

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Simoni M, Bakker E, Krausz C (2004) EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. State of the art 2004. Int J Androl 27(4):240–249

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Simoni M, Gromoll J, Hoppner W et al (1999) Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab 84(2):751–755

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Stuhrmann M, Dork T (2000) CFTR gene mutations and male infertility. Andrologia 32(2):71–83

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Tapanainen JS, Aittomaki K, Min J et al (1997) Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 15(2):205–206

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Tuttelmann F, Rajpert-De ME, Nieschlag E, Simoni M (2007) Gene polymorphisms and male infertility–a meta-analysis and literature review. Reprod Biomed Online 15(6):643–658

    PubMed  Article  Google Scholar 

  48. 48.

    Tuttelmann F, Werny F, Cooper TG et al (2010) Clinical experience with azoospermia: aetiology and chances for spermatozoa detection upon biopsy. Int J Androl 28

  49. 49.

    Wang JX, Norman RJ, Wilcox AJ (2004) Incidence of spontaneous abortion among pregnancies produced by assisted reproductive technology. Hum Reprod 19(2):272–277

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Wennerholm UB, Soderstrom-Anttila V, Bergh C et al (2009) Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 24(9):2158–2172

    PubMed  Article  Google Scholar 

  51. 51.

    Williams MA, Goldman MB, Mittendorf R, Monson RR (1991) Subfertility and the risk of low birth weight. Fertil Steril 56(4):668–671

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ludwig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ludwig, M., Ludwig, A. Genetische Risiken der assistierten Reproduktion. medgen 23, 275–280 (2011). https://doi.org/10.1007/s11825-011-0273-0

Download citation

Schlüsselwörter

  • Infertilität
  • Spermieninjektion, intrazytoplasmatische
  • Konzeption
  • Azoospermie
  • Chromosomenanomalien

Keywords

  • Infertility
  • Sperm injection, intracytoplasmic
  • Conception
  • Azoospermia
  • Chromosome aberrrations