Skip to main content
Log in

Lipoproteinstoffwechsel und koronare Herzkrankheit

Modellsysteme für komplexe Erkrankungen

Lipoprotein metabolism and coronary artery disease

Model systems for complex diseases

  • Übersichten
  • Published:
medizinische genetik

Zusammenfassung

Untersuchungen von genetischen Störungen des Lipoproteinstoffwechsels und deren Zusammenhang mit der koronaren Herzkrankheit (KHK) haben eine VorreiteroIIe für das Verständnis der Genetik komplexer Erkrankungen gespielt. Sie haben darüber hinaus zur Entwicklung von Medikamenten zur Prävention der Atherosklerose als häufigster Todesursache in den lndustrieländem geführt. So hat die Analyse der familiären Hypercholesterinämie (FH), deren häufigste Ursache Mutationen im LDLR-Gen sind, zur Entwicklung der HMG-CoA-Reduktasehemmer (Statine) beigetragen. Mittlerweile wurden durch genomweite Assoziationsstudien (GWAS) Varianten in über 90 Genen gefunden, die die Konzentrationen von Plasmalipiden beeinflussen. Diese erklären aber nur einen geringen Teil der genetischen Varianz. Am Beispiel des klassischen Apo-E-Polymorphismus wird als ein möglicher Grund für die „missing heritability“ die Auswahl der auf den Arrays repräsentierten SNPs diskutiert und gezeigt, dass Interaktionen dazu führen können, dass Assoziationen von Genotypen mit Erkrankungen übersehen werden. Aufgrund genetischer Untersuchungen nach dem Prinzip der „Mendelian randomization“ ist die pathophysiologische Relevanz einer hohen Lp(a)-Konzentration als Risikofaktor für KHK heutzutage unbestritten. Für Patienten mit terminaler Niereninsuffizienz ist jedoch ein Polymorphismus (KIV-2-CNV) im LPA-Gen ein besserer Prädiktor für die KHK als erhöhte Lp(a)-Konzentrationen im Plasma.

Abstract

A better understanding of complex diseases and their genetics has been gained by investigating genetic disorders of lipoprotein metabolism. This has resulted in the development of ddrugs to prevent atherosclerosis, the most frequent cause of death in industrialized countries. Thus, analysis of familial hypercholesterinemia (FH), the most frequent cause of which are mutations on the LDLR gene, has contributed to the development of HMG-CoA reductase inhibitors (statins). Meanwhile, in genome-wide association studies (GWAS), variants in over 90 genes have been found to influence the concentration of plasma lipids. However, these explain only a small fraction of the genetic variance of the traits. Taking the classical polymorphism of Apo-E as an example, it is discussed that one possible reason for the “missing heritability” may be the selection of the SNPs on the arrays used in the GWAS. Further, this polymorphism demonstrates how interactions may mask a connection between a genotype and a disease. Genetic studies based on the principle of “Mendelian randomization” have established the causal role of a high Lp(a) concentration as a risk factor for coronary heart disease (CHD). For patients with end-stage renal disease, however, a polymorphism (KIV-2 CNV) is a better predictor for CHD than Lp(a) concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Goldstein JL, Brown MS (2001) Molecular medicine. The cholesterol quartet. Science 292(5520):1310–1312

    Article  PubMed  CAS  Google Scholar 

  2. Ishibashi S, Herz J, Maeda N et al (1994) The two-receptor model of lipoprotein clearance: tests of the hypothesis in „knockout“ mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci U S A 91(10):4431–4435

    Article  PubMed  CAS  Google Scholar 

  3. Brown MS, Goldstein JL (1992) Koch’s postulates for cholesterol. Cell 71(2):187–188

    Article  PubMed  CAS  Google Scholar 

  4. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein JL, Brown MS, Anderson RG et al (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124(1):35–46

    Article  PubMed  CAS  Google Scholar 

  7. Brown MS, Goldstein JL (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50(Suppl):S15–S27

    Article  PubMed  Google Scholar 

  8. Brown MS, Goldstein JL (1996) Heart attacks: gone with the century? Science 272(5262):629

    Article  PubMed  CAS  Google Scholar 

  9. Rust S, Rosier M, Funke H et al (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22(4):352–355

    Article  PubMed  CAS  Google Scholar 

  10. Bodzioch M, Orsó E, Klucken J et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22(4):347–351

    Article  PubMed  CAS  Google Scholar 

  11. Brooks-Wilson A, Marcil M, Clee SM et al (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22(4):336–345

    Article  PubMed  CAS  Google Scholar 

  12. Utermann G, Hees M, Steinmetz A (1977) Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man. Nature 269(5629):604–607

    Article  PubMed  CAS  Google Scholar 

  13. Utermann G, Pruin N, Steinmetz A (1979) Polymorphism of apolipoprotein E. III. Effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 15(1):63–72

    Article  PubMed  CAS  Google Scholar 

  14. Utermann G (1987) Apolipoprotein E polymorphism in health and disease. Am Heart J 113(2 Pt 2):433–440

    Article  PubMed  CAS  Google Scholar 

  15. Lusis AJ, Pajukanta P (2008) A treasure trove for lipoprotein biology. Nat Genet 40(2):129–130

    Article  PubMed  CAS  Google Scholar 

  16. Teslovich TM, Musunuru K, Smith AV et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713

    Article  PubMed  CAS  Google Scholar 

  17. Cohen JC, Kiss RS, Pertsemlidis A et al (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305(5685):869–872

    Article  PubMed  CAS  Google Scholar 

  18. Utermann G, Vogelberg KH, Steinmetz A et al (1979) Polymorphism of apolipoprotein E. II. Genetics of hyperlipoproteinemia type III. Clin Genet 15(1):37–62

    Article  PubMed  CAS  Google Scholar 

  19. Hallman DM, Boerwinkle E, Saha N et al (1991) The apolipoprotein E polymorphism: a comparison of allele frequencies and effects in nine populations. Am J Hum Genet 49(2):338–349

    PubMed  CAS  Google Scholar 

  20. Utermann G (1994) Alzheimer’s disease. The apolipoprotein E connection. Curr Biol 4(4):362–365

    Article  PubMed  CAS  Google Scholar 

  21. Boerwinkle E, Utermann G (1988) Simultaneous effects of the apolipoprotein E polymorphism on apolipoprotein E, apolipoprotein B, and cholesterol metabolism. Am J Hum Genet 42(1):104–112

    PubMed  CAS  Google Scholar 

  22. Hegele RA, Ban MR, Hsueh N et al (2009) A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia. Hum Mol Genet 18(21):4189–4194

    Article  PubMed  CAS  Google Scholar 

  23. Bennet AM, Di Angelantonio E, Ye Z et al (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 298(11):1300–1311

    Article  PubMed  CAS  Google Scholar 

  24. Utermann G, Hardewig A, Zimmer F (1984) Apolipoprotein E phenotypes in patients with myocardial infarction. Hum Genet 65(3):237–241

    Article  PubMed  CAS  Google Scholar 

  25. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630

    Article  PubMed  CAS  Google Scholar 

  26. Raber J, Wong D, Yu GQ et al (2000) Apolipoprotein E and cognitive performance. Nature 404(6776):352–354

    Article  PubMed  CAS  Google Scholar 

  27. Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50(Suppl):S183–S188

    Article  PubMed  Google Scholar 

  28. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354(12):1264–1272

    Article  PubMed  CAS  Google Scholar 

  29. McPherson R, Pertsemlidis A, Kavaslar N et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491

    Article  PubMed  CAS  Google Scholar 

  30. Berg K (1963) A new serum type system in man – The LP system. Acta Pathol Microbiol Scand 59:369–382

    Article  PubMed  CAS  Google Scholar 

  31. Utermann G (1989) The mysteries of lipoprotein(a). Science 246(4932):904–910

    Article  PubMed  CAS  Google Scholar 

  32. Ogorelkova M, Gruber A, Utermann G (1999) Molecular basis of congenital lp(a) deficiency: a frequent apo(a) ‚null‘ mutation in caucasians. Hum Mol Genet 8(11):2087–2096

    Article  PubMed  CAS  Google Scholar 

  33. Parson W, Kraft HG, Niederstätter H et al (2004) A common nonsense mutation in the repetitive Kringle IV-2 domain of human apolipoprotein(a) results in a truncated protein and low plasma Lp(a). Hum Mutat 24(6):474–480

    Article  PubMed  CAS  Google Scholar 

  34. McLean JW, Tomlinson JE, Kuang WJ et al (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330(6144):132–137

    Article  PubMed  CAS  Google Scholar 

  35. Lackner C, Boerwinkle E, Leffert CC et al (1991) Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest 87(6):2153–2161

    Article  PubMed  CAS  Google Scholar 

  36. Kraft HG, Köchl S, Menzel HJ et al (1992) The apolipoprotein (a) gene: a transcribed hypervariable locus controlling plasma lipoprotein (a) concentration. Hum Genet 90(3):220–230

    Article  PubMed  CAS  Google Scholar 

  37. Erdel M, Hubalek M, Lingenhel A et al (1999) Counting the repetitive kringle-IV repeats in the gene encoding human apolipoprotein(a) by fibre-FISH. Nat Genet 21(4):357–358

    Article  PubMed  CAS  Google Scholar 

  38. Utermann G, Menzel HJ, Kraft HG et al (1987) Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma. J Clin Invest 80(2):458–465

    Article  PubMed  CAS  Google Scholar 

  39. Marcovina SM, Zhang ZH, Gaur VP, Albers JJ (1993) Identification of 34 apolipoprotein(a) isoforms: differential expression of apolipoprotein(a) alleles between American blacks and whites. Biochem Biophys Res Commun

  40. Kamstrup PR (2010) Lipoprotein(a) and ischemic heart disease – a causal association? A review. Atherosclerosis 211(1):15–23

    Article  PubMed  CAS  Google Scholar 

  41. Brown MS, Goldstein JL (1987) Plasma lipoproteins: teaching old dogmas new tricks. Nature 330(6144):113–114

    Article  PubMed  CAS  Google Scholar 

  42. Emerging Risk Factors Collaboration, Erqou S, Kaptoge S, Perry PL et al (2009) Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302(4):412–423

    Article  Google Scholar 

  43. Katan MB (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1(8479):507–508

    Article  PubMed  CAS  Google Scholar 

  44. Sandholzer C, Saha N, Kark JD et al (1992) Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arterioscler Thromb 12(10):1214–1226

    PubMed  CAS  Google Scholar 

  45. Kraft HG, Lingenhel A, Köchl S et al (1996) Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol 16(6):713–719

    PubMed  CAS  Google Scholar 

  46. Erqou S, Thompson A, Di Angelantonio E et al (2010) Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J Am Coll Cardiol 55(19):2160–2167

    Article  PubMed  CAS  Google Scholar 

  47. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG (2009) Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301(22):2331–2339

    Article  PubMed  CAS  Google Scholar 

  48. Clarke R, Peden JF, Hopewell JC et al (2009) Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 361(26):2518–2528

    Article  PubMed  CAS  Google Scholar 

  49. Nordestgaard BG, Chapman MJ, Ray K et al (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31(23):2844–2853

    Article  PubMed  CAS  Google Scholar 

  50. Kamstrup PR, Benn M, Tybjaerg-Hansen A, Nordestgaard BG (2008) Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart Study. Circulation 117(2):176–184

    Article  PubMed  CAS  Google Scholar 

  51. Kronenberg F, Utermann G, Dieplinger H (1996) Lipoprotein(a) in renal disease. Am J Kidney Dis 27(1):1–25

    Article  PubMed  CAS  Google Scholar 

  52. Lawn RM, Schwartz K, Patthy L (1997) Convergent evolution of apolipoprotein(a) in primates and hedgehog. Proc Natl Acad Sci U S A 94(22):11992–11997

    Article  PubMed  CAS  Google Scholar 

  53. Lawn RM, Wade DP, Hammer RE et al (1992) Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 360(6405):670–672

    Article  PubMed  CAS  Google Scholar 

  54. Jaeger BR, Richter Y, Nagel D et al (2009) Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pract Cardiovasc Med 6(3):229–239

    Article  PubMed  CAS  Google Scholar 

  55. Kastelein JJ, Wedel MK, Baker BF et al (2006) Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 114(16):1729–1735

    Article  PubMed  CAS  Google Scholar 

  56. Utermann G (1999) Genetic architecture and evolution of the lipoprotein(a) trait. Curr Opin Lipidol 10(2):133–141

    Article  PubMed  CAS  Google Scholar 

  57. Seed M, Hoppichler F, Reaveley D et al (1990) Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia. N Engl J Med 322(21):1494–1499

    Article  PubMed  CAS  Google Scholar 

  58. Ogorelkova M, Kraft HG, Ehnholm C, Utermann G (2001) Single nucleotide polymorphisms in exons of the apo(a) kringles IV types 6 to 10 domain affect Lp(a) plasma concentrations and have different patterns in Africans and Caucasians. Hum Mol Genet 10(8):815–824

    Article  PubMed  CAS  Google Scholar 

  59. Utermann G (2001) Lipoprotein(a). In: Scriver CR, Beaudet AL, Sly WS, Valle D (Hrsg) The metabolic and molecular basis of inherited disease, 8. Aufl. Mc-Graw-Hill, New York, S 2753–2787

Download references

Danksagung

Den zahlreichen Mitarbeitern, die über viele Jahre an den Projekten zum Apo-E-Polymorphismus und zum Lp(a) mitgewirkt haben, gilt mein besonderer Dank. F. Kronenberg danke ich für die kritische Durchsicht des Manuskripts und Kommentare.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Utermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utermann, G. Lipoproteinstoffwechsel und koronare Herzkrankheit. medgen 23, 7–14 (2011). https://doi.org/10.1007/s11825-010-0259-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11825-010-0259-3

Schlüsselwörter

Keywords

Navigation