Skip to main content

Tiermodelle mit Zystennieren

Animal models with cystic kidneys

Zusammenfassung

Polyzystische Nierenerkrankungen (PKD) sind der häufigste genetische Grund für ein terminales Nierenversagen. Flüssigkeitsgefüllte Zysten bilden sich im Nierenparenchym und beeinträchtigen die Nierenfunktion mit zunehmender Anzahl und Größe, bis diese vollkommen zum Erliegen kommt. Seit mehreren Jahrzehnten werden Tiermodelle mit PKD für die Aufklärung der molekularen Mechanismen der Zystogenese verwendet. War man anfangs auf zufällige, durch Spontanmutationen aufgetretene Zystenmodelle angewiesen, eröffneten transgene und Knock-out-Technologien in den letzen 20 Jahren eine völlig neue Dimension, die molekularen Pathomechanismen der Zystogenese durch gezielte genetische Veränderungen im Erbgut aufzuklären. Nur mit der Hilfe von Tiermodellen konnte die Lokalisation von „Zystenproteinen“ in den Zilien und die Beteiligung zilienabhängiger Signalkaskaden in der Zystogenese gezeigt werden. Dieser Artikel gibt einen Überblick über die derzeit vorhandenen murinen Tiermodelle mit PKD.

Abstract

Polycystic kidney disease (PKD) is the most common genetic cause for end-stage renal failure. Numerous fluid-filled cysts develop in the parenchyma of the kidney. They compromise kidney function with increasing number and size of the cysts until renal failure is inevitable. The cysts are epithelial in origin but cysts develop in different nephron segments depending on the type of the PKD. Animal models with PKD have been used for several decades to unravel the molecular mechanisms of cystogenesis. Initially, research was dependent on the morphological analysis of spontaneously emerging cystic phenotypes. Nowadays, in addition to theses models transgenic and knock-out models targeting PKD genes are also available. The localization of “cystoproteins” in the cilia of the tubulus epithelia and the involvement of cilia-dependent pathways in cystogenesis was shown only with the help of these animal models. This article gives an overview on the currently available murine models presenting with PKD.

This is a preview of subscription content, access via your institution.

Literatur

  1. 1.

    Atala A, Freeman MR, Mandell J, Beier DR (1993) Juvenile cystic kidneys (jck): a new mouse mutation which causes polycystic kidneys. Kidney Int 43:1081–1085

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Attanasio M, Uhlenhaut NH, Sousa VH et al (2007) Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet 39:1018–1024

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bergmann C, Fliegauf M, Bruchle NO et al (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Boulter C, Mulroy S, Webb S et al (2001) Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 98:12174–12179

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Brown JH, Bihoreau MT, Hoffmann S et al (2005) Missense mutation in sterile {alpha} motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol 16:3517–3526

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Burtey S, Riera M, Ribe E et al (2008) Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol Dial Transplant 23:1157–1165

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Chauvet V, Tian X, Husson H et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443

    CAS  PubMed  Google Scholar 

  8. 8.

    Cook SA, Collin GB, Bronson RT et al (2009) A mouse model for Meckel syndrome type 3. J Am Soc Nephrol 20:753–764

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dawe HR, Smith UM, Cullinane AR et al (2007) The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 16:173–186

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Flaherty L, Bryda EC, Collins D et al (1995) New mouse model for polycystic kidney disease with both recessive and dominant gene effects. Kidney Int 47:552–558

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Frank V, Bruchle NO, Mager S et al (2007) Aberrant splicing is a common mutational mechanism in MKS1, a key player in Meckel-Gruber syndrome. Hum Mutat 28:638–639

    Article  PubMed  Google Scholar 

  12. 12.

    Gallagher AR, Esquivel EL, Briere TS et al (2008) Biliary and pancreatic dysgenesis in mice harboring a mutation in Pkhd1. Am J Pathol 172:417–429

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gallagher AR, Hoffmann S, Brown N et al (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17:2719–2730

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gresh L, Fischer E, Reimann A et al (2004) A transcriptional network in polycystic kidney disease. Embo J 23:1657–1668

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hilton LK, White MC, Quarmby LM (2009) The NIMA-related kinase NEK1 cycles through the nucleus. Biochem Biophys Res Commun 389:52–56

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ibraghimov-Beskrovnaya O (2007) Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 6:776–779

    CAS  PubMed  Google Scholar 

  17. 17.

    Janaswami PM, Birkenmeier EH, Cook SA et al (1997) Identification and genetic mapping of a new polycystic kidney disease on mouse chromosome 8. Genomics 40:101–107

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kaspareit-Rittinghausen J, Deerberg F, Rapp KG, Wcislo A (1990) A new rat model for polycystic kidney disease in humans. Transplant Proc 22:2582–2583

    CAS  PubMed  Google Scholar 

  19. 19.

    Katsuyama M, Masuyama T, Komura I et al (2000) Characterization of a novel polycystic kidney rat model with accompanying polycystic liver. Exp Anim 49:51–55

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kim I, Ding T, Fu Y et al (2009) Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J Am Soc Nephrol 20:2556–2569

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kim I, Li C, Liang D et al (2008) Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283:31559–31566

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Kim YS, Kang HS, Jetten AM (2007) The Kruppel-like zinc finger protein Glis2 functions as a negative modulator of the Wnt/beta-catenin signaling pathway. FEBS Lett 581:858–864

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Koulen P, Cai Y, Geng L et al (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kurbegovic A, Cote O, Couillard M et al (2010) Pkd1 transgenic mice: adult model of polycystic kidney disease with extrarenal and renal phenotypes. Hum Mol Genet

  25. 25.

    Lantinga-van Leeuwen IS, Leonhard WN, Wal A van der et al (2007) Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet 16:3188–3196

    Article  Google Scholar 

  26. 26.

    Leeuwen ISL-v, Dauwerse JG, Baelde HJ et al (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13:3069–3077

    Article  Google Scholar 

  27. 27.

    Lu W, Peissel B, Babakhanlou H et al (1997) Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17:179–181

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Maisonneuve C, Guilleret I, Vick P et al (2009) Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136:3019–3030

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Marszalek JR, Ruiz-Lozano P, Roberts E et al (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci U S A 96:5043–5048

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    May-Simera HL, Ross A, Rix S et al (2009) Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol 514:174–188

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Morgan D, Turnpenny L, Goodship J et al (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149–156

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Murcia NS, Richards WG, Yoder BK et al (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355

    CAS  PubMed  Google Scholar 

  33. 33.

    Nauli SM, Alenghat FJ, Luo Y et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Nauta J, Goedbloed MA, Herck HV et al (2000) New rat model that phenotypically resembles autosomal recessive polycystic kidney disease. J Am Soc Nephrol 11:2272–2284

    CAS  PubMed  Google Scholar 

  35. 35.

    Nauta J, Ozawa Y, Sweeney WE Jr et al (1993) Renal and biliary abnormalities in a new murine model of autosomal recessive polycystic kidney disease. Pediatr Nephrol 7:163–172

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Nishimura DY, Fath M, Mullins RF et al (2004) Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101:16588–16593

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Park EY, Sung YH, Yang MH et al (2009) Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J Biol Chem 284:7214–7222

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Pennekamp P, Karcher C, Fischer A et al (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Preminger GM, Koch WE, Fried FA et al (1982) Murine congenital polycystic kidney disease: a model for studying development of cystic disease. J Urol 127:556–560

    CAS  PubMed  Google Scholar 

  40. 40.

    Robert A, Margall-Ducos G, Guidotti JE et al (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120:628–637

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Shalom O, Shalva N, Altschuler Y, Motro B (2008) The mammalian Nek1 kinase is involved in primary cilium formation. FEBS Lett 582:1465–1470

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Shiba D, Manning DK, Koga H et al (2010) Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia. Cytoskeleton (Hoboken) 67:112–119

    Google Scholar 

  43. 43.

    Shiba D, Yamaoka Y, Hagiwara H et al (2009) Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J Cell Sci 122:44–54

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Shibazaki S, Yu Z, Nishio S et al (2008) Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum Mol Genet 17:1505–1516

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Simons M, Gloy J, Ganner A et al (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Smith LA, Bukanov NO, Husson H et al (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: Insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol 17:2821–2831

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Stagner EE, Bouvrette DJ, Cheng J, Bryda EC (2009) The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. Biochem Biophys Res Commun 383:16–21

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Takahashi H, Ueyama Y, Hibino T et al (1986) A new mouse model of genetically transmitted polycystic kidney disease. J Urol 135:1280–1283

    CAS  PubMed  Google Scholar 

  49. 49.

    Tao B, Bu S, Yang Z et al (2009) Cystin localizes to primary cilia via membrane microdomains and a targeting motif. J Am Soc Nephrol 20:2570–2580

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Thivierge C, Kurbegovic A, Couillard M et al (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 26:1538–1548

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Torres VE, Harris PC (2007) Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med 261:17–31

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Tran U, Pickney LM, Özpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Tran U, Zakin L, Schweickert A et al (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Trudel M, D’Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39:665–671

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Vierkotten J, Dildrop R, Peters T et al (2007) Ftm is a novel basal body protein of cilia involved in Shh signalling. Development 134:2569–2577

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ward CJ, Hogan MC, Rossetti S et al (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  57. 57.

    Weatherbee SD, Niswander LA, Anderson KV (2009) A mouse model for Meckel syndrome reveals Mks1 is required for ciliogenesis and Hedgehog signaling. Hum Mol Genet 18:4565–4575

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Williams SS, Cobo-Stark P, James LR et al (2008) Kidney cysts, pancreatic cysts, and biliary disease in a mouse model of autosomal recessive polycystic kidney disease. Pediatr Nephrol 23:733–741

    Article  PubMed  Google Scholar 

  59. 59.

    Wu G, D’Agati V, Cai Y et al (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Wu G, Markowitz GS, Li L et al (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24:75–78

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Yoder B, Richards W, Sweeney W et al (1995) Insertional mutagenesis and molecular analysis of a new gene associated with polycystic kidney disease. Proc Assoc Am Physicians 107:314–323

    CAS  PubMed  Google Scholar 

  62. 62.

    Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Zafar I, Belibi FA, He Z, Edelstein CL (2009) Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant 24:2349–2353

    CAS  Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Neudecker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neudecker, S., Gretz, N. & Hoffmann, S. Tiermodelle mit Zystennieren. medgen 22, 332–338 (2010). https://doi.org/10.1007/s11825-010-0230-3

Download citation

Schlüsselwörter

  • Polyzystische Nierenerkrankung
  • Tiermodelle
  • Zilien
  • Zystenproteine
  • Ziliopathie

Keywords

  • Polycystic kidney diseases
  • Models, animal
  • Cilia
  • Cystoproteins
  • Ciliopathy