Skip to main content

Genetik der monogenen isolierten Alopezien

Genetics of the monogenic isolated alopecias

Zusammenfassung

Die monogen vererbten isolierten Alopezien umfassen eine Gruppe klinisch und genetisch heterogener Formen von Haarlosigkeit/-verlust. Die klinische Unterteilung der isolierten Alopezien erfolgt nach Erkrankungsbeginn, betroffenen Regionen und Struktur des Haarschafts. Frauen und Männer sind gleichermaßen betroffen, die Vererbung ist autosomal-dominant oder autosomal-rezessiv. Seit der Identifizierung des Keratingens KRT86 als Ursache für die so genannte Monilethrix im Jahr 1997 konnten in der letzten Dekade Mutationen in 9 weiteren Genen für verschiedene Formen isolierter Alopezien identifiziert werden, darunter weitere Keratingene (KRT81 und KRT83) für die Monilethrix, das Hairless-Gen für die Atrichia congenita/papuläre Atrichie, das Corneodesmosingen für die autosomal-dominante Form der Hypotrichosis simplex sowie die Gene Desmoglein 4, Lipase H und der G-Protein gekoppelte Rezeptor P2RY5 (LPAR6) für autosomal-rezessive Formen der Hypotrichose. Molekulargenetische und pathophysiologische Untersuchungen dieser seltenen Haarentwicklungsstörungen trugen entscheidend dazu bei, grundlegende Mechanismen des Haarausfalls und somit auch physiologische Mechanismen des Haarwachstums besser zu verstehen.

Abstract

The monogenic inherited isolated alopecias comprise a group of clinically and genetically heterogeneous forms of hairlessness or hair loss. Clinical classification of the isolated alopecias is based on the onset of the disorder, the regions affected, and the structure of the hair shaft. Men and women are equally affected, and the mode of inheritance is autosomal dominant or autosomal recessive. Since the identification of the keratin gene KRT86 as a cause of the so-called monilethrix in 1997, mutations in nine other genes have been identified for various isolated alopecias. These include other keratin genes for monilethrix (KRT81 and KRT83), the hairless gene for atrichia congenita/papular atrichia, the corneodesmosin gene for the autosomal dominant form of hypotrichosis simplex, and the genes desmoglein 4, lipase H, and the G-protein-coupled receptor P2RY5 (LPAR6) for the autosomal recessive forms of hypotrichosis. Molecular genetic and pathophysiological studies of these rare disorders of hair development have contributed significantly to our understanding of the basic mechanisms of hair loss as well as the physiological mechanisms of hair growth.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Ahmad W, Faiyaz ul Haque M, Brancolini V et al (1998) Alopecia universalis associated with a mutation in the human hairless gene. Science 279:720–724

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Al Aboud K, Al Hawsawi K, Al Aboud D, Al Githami A (2002) Hereditary hypotrichosis simplex: report of a family. Clin Exp Dermatol 27:654–656

    Article  Google Scholar 

  3. 3.

    Baumer A, Belli S, Trueb RM, Schinzel A (2000) An autosomal dominant form of hereditary hypotrichosis simplex maps to 18p11.32–p11.23 in an Italian family. Eur J Hum Genet 8:443–448

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Bentley-Phillips B, Grace HJ (1979) Hereditary hypotrichosis. A previously undescribed syndrome. Br J Dermatol 101:331–339

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Betz RC, Lee YA, Bygum A et al (2000) A gene for hypotrichosis simplex of the scalp maps to chromosome 6p21.3. Am J Hum Genet 66:1979–1983

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Cichon S, Anker M, Vogt IR et al (1998) Cloning, genomic organization, alternative transcripts and mutational analysis of the gene responsible for autosomal recessive universal congenital alopecia. Hum Mol Genet 7:1671–1679

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Just M, Ribera M, Fuente MJ et al (1998) Hereditary hypotrichosis simplex. Dermatology 196:339–342

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Kazantseva A, Goltsov A, Zinchenko R et al (2006) Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 314:982–985

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Kohn G, Metzker A (1987) Hereditary hypotrichosis simplex of the scalp. Clin Genet 32:120–124

    CAS  PubMed  Google Scholar 

  10. 10.

    Levy-Nissenbaum E, Betz RC, Frydman M et al (2003) Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nat Genet 34:151–153

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Pasternack SM, von Kügelgen I, Aboud KA et al (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40:329–334

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Shimomura Y, Wajid M, Ishii Y et al (2008) Disruption of P2RY5, an orphan G protein-coupled receptor, underlies autosomal recessive woolly hair. Nat Genet 40:335–339

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Sprecher E (2008) News and views. Nat Genet 40:265–266

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Toribio J, Quinones PA (1974) Hereditary hypotrichosis simplex of the scalp. Evidence for autosomal dominant inheritance. Br J Dermatol 91:687–696

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Van Steensel M, Smith FJ, Steijlen PM et al (1999) The gene for hypotrichosis of Marie Unna maps between D8S258 and D8S298: exclusion of the hr gene by cDNA and genomic sequencing. Am J Hum Genet 65:413–419

    Article  Google Scholar 

  16. 16.

    Van Steensel MA, Steijlen PM, Bladergroen RS et al (2005) A missense mutation in the type II hair keratin hHb3 is associated with monilethrix. J Med Genet 42:e19

    Article  Google Scholar 

  17. 17.

    Wang PG, Gao M, Cui Y et al (2007) A new clinical variant of hereditary localized alopecia: report of a Chinese family mapped to chromosome 2p25.1–2p23.2. J Invest Dermatol 127:1776–1779

    CAS  PubMed  Google Scholar 

  18. 18.

    Wen Y, Liu Y, Xu Y et al (2009) Loss-of-function mutations of an inhibitory upstream ORF in the human hairless transcript cause Marie Unna hereditary hypotrichosis. Nat Genet 41:228–233

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Winter H, Labreze C, Chapalain V et al (1998) A variable monilethrix phenotype associated with a novel mutation, Glu402Lys, in the helix termination motif of the type II hair keratin hHb1. J Invest Dermatol 111:169–172

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Yang S, Gao M, Cui Y et al (2005) Identification of a novel locus for Marie Unna hereditary hypotrichosis to a 17.5 cM interval at 1p21.1–1q21.3. J Invest Dermatol 125:711–714

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Zlotogorski A, Marek D, Horev L et al (2006) An autosomal recessive form of monilethrix is caused by mutations in DSG4: clinical overlap with localized autosomal recessive hypotrichosis. J Invest Dermatol 126:1292–1296

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R.C. Betz.

Additional information

Das Projekt erhielt Fördermittel aus dem Emmy Noether-Programm der DFG und BONFOR (Forschungsförderung an der Universität Bonn).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Betz, R. Genetik der monogenen isolierten Alopezien. medgen 21, 505–510 (2009). https://doi.org/10.1007/s11825-009-0200-9

Download citation

Schlüsselwörter

  • Alopezie
  • Hypotrichose
  • Atrichia congenita
  • Papuläre Atrichie
  • Monilethrix

Keywords

  • Alopecia
  • Hypotrichosis
  • Atrichia congenita
  • Papular atrichia
  • Monilethrix