Skip to main content

Ziliopathien

Ciliopathies

Zusammenfassung

Zilien erfüllen viele unterschiedliche Funktionen, sie dienen als Mechano-, Chemo- und Osmosensoren und spielen bei zahlreichen Signalwegen, für eine adäquate Organentwicklung, für die Aufrechterhaltung der Gewebehomöostase und bei grundsätzlichen Entwicklungsprozessen eine wichtige Rolle. Die meisten Zelltypen im Körper weisen primäre Zilien auf, motile Zilien kommen v. a. im Respirationstrakt, ependymal in den Hirnventrikeln sowie auf Eileiterepithelien vor. Mit einem Funktionsverlust der Zilien einhergehende Krankheiten werden als Ziliopathien bezeichnet. Im vorliegenden Beitrag werden einige Erkrankungen, wie die primäre ziliäre Dyskinesie (PCD) oder polyzystische Nierenerkrankungen (PKD) und hier insbesondere die ADPKD (autosomal-dominante PKD), vorgestellt. Zudem werden die bisher identifizierten Gene, die bei der Pathogenese von Ziliopathien eine Rolle spielen, vorgestellt. Dabei verursachen viele der Genmutationen mehr als nur eine Erkrankung, und viele der aufgeführten Merkmale kommen bei verschiedenen Krankheiten vor.

Abstract

Cilia fulfil many different functions: they serve as mechano-, chemo- and osmo-sensors and play an important role in many signaling pathways in terms of adequate organ development, maintaining tissue homeostasis and basic development processes. Most cell types in the body possess primary cilia, while motile cilia are found mainly in the respiratory tract, ependyma lining the brain ventricles and tubal epithelia. When cilia lose their function, the resulting diseases are described as ciliopathies. The present article discusses some of these diseases, including primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD), in particular autosomal-dominant PKD (ADPKD). In addition, we discuss the genes identified to date which play a role in the pathogenesis of ciliopathies. Many of these gene mutations cause more than one disease, and many of the characteristics mentioned are found in various diseases.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. 1.

    Adeva M, El-Yopussef M, Rossetti S et al (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ADPKD). Medicine (Baltimore) 85:1–21

    Google Scholar 

  2. 2.

    Arts HH, Doherty D, Van Beersum SE et al (2007) Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 39:882–888

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Attanasio M, Uhlenhaut NH, Sousa VH et al (2007) Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat Genet 39:1018–1024

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Badano JL, Kim JC, Hoskins BE et al (2003) Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet 12:1651–1659

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour. Nature 401:386–389

    PubMed  CAS  Google Scholar 

  6. 6.

    Beales PL (2005) Lifting the lid on Pandora’s box: the Bardet-Biedl syndrome. Curr Opin Genet Dev 15:315–323

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bergmann C, Senderek J, Sedlacek B et al (2003) Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 14:76–89

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Bush A, Chodhari R, Collins N et al (2007) Primary ciliary dyskinesia: current state of the art. Arch Dis Child 92:1136–1140

    PubMed  Article  Google Scholar 

  9. 9.

    Ferrante MI, Giorgio G, Feather SA et al (2001) Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 68:569–576

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Fischer E, Legue E, Doyen A et al (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    PubMed  Article  Google Scholar 

  13. 13.

    Harris PC (2007) Genetic complexity in Joubert syndrome and related disorders. Kidney Int 72:1421–1423

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Hateboer N, Van Dijk MA, Bogdanova N et al (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. Lancet 353:103–107

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Haycraft CJ, Swoboda P, Taulman PD et al (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128:1493–1505

    PubMed  CAS  Google Scholar 

  16. 16.

    Haycraft CJ, Banizs B, Aydin-Son Y et al (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53

    PubMed  Article  Google Scholar 

  17. 17.

    Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Hoefele J, Wolf MT, O’Toole JF et al (2007) Evidence of oligogenic inheritance in nephronophthisis. J Am Soc Nephrol 18:2789–2795

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hogan MC, Manganelli L, Woollard JR et al (2009) Characterization of polycystic kidney disease protein (PKD) positive exosome-like vesicles. J Am Soc Nephrol Jan 21. [Epub ahead of print]

  20. 20.

    Huangfu D, Liu A, Rakeman AS et al (2003) Hedgehog signaling in the mouse requires intraflagellar transport proteins. Nature 426:83–87

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hughes J, Ward CJ, Peral B et al (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    International Polycystic Kidney Disease Consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81:289–298

    Google Scholar 

  23. 23.

    Kartagener M, Stucki P (1962) Bronchiectasis with situs inversus. Arch Pediatr 79:193–207

    PubMed  CAS  Google Scholar 

  24. 24.

    Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci USA 90:5519–5523

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Kozminski KG, Beech PL, Rosenbaum JL (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131:1517–1527

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kulaga HM, Leitch CC Eichers ER et al (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36:994–998

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Kyttälä M, Tallila J, Salonen R et al (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38:155–157

    PubMed  Article  Google Scholar 

  28. 28.

    Leitch CC, Zaghloul NA, Davis EE et al (2008) Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 40:443–448

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Lin F, Hiesberger T, Cordes K et al (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA 100:5286–5291

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Loges NT, Olbrich H, Fenske L et al (2008) DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 83:547–558

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Marszalek JR, Ruiz-Lozano P, Roberts E et al (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96:5043–5048

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Masyuk TV, Huang BQ, Ward CJ et al (2003) Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125:1303–1310

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    McGrath J, Somlo S, Makova S et al (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Mochizuki T, Wu G, Hayashi T et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Mochizuki T, Saijoh Y, Tsuchiya K et al (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Murcia NS, Richards WG, Yoder BK et al (2000) The oak ridge polycystic kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355

    PubMed  CAS  Google Scholar 

  38. 38.

    Nauli SM Alenghat FJ, Luo Y, et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Olbrich H, Häffner K, Kispert A et al (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 30:143–144

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Otto EA, Schermer B, Obara T et al (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141:979–992

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Pazour GJ, Dickert BL, Vucica Y et al (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Pazour GJ, San Agustin JT, Follit JA et al (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Pedersen LB, Veland IR, Schroder JM, Christensen ST (2008) Assembly of primary cilia. Dev Dyn 237:1993–2006

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Pennekamp P, Karcher C, Fischer A et al (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Qin H, Rosenbaum JL, Barr MM (2001) An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr Biol 11:457–461

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Ross AJ, May-Simera H, Eichers ER et al (2005) Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37:1135–1140

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Santos N, Reiter JF (2008) Building it up and taking it down: the regulation of vertebrate ciliogenesis. Dev Dyn 237:1972–1981

    PubMed  Article  Google Scholar 

  51. 51.

    Simons M, Gloy J, Ganner A et al (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Smith UM, Consugar M, Tee LJ et al (2006) The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 38:191–196

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Takeda S, Yonekawa Y, Tanaka Y et al (1999) Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 145:825–836

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–177

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301

    PubMed  Article  Google Scholar 

  56. 56.

    Tory K, Lacoste T, Burglen L et al (2007) High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18:1566–1575

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Wang S, Luo Y, Wilson PD et al (2004) The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    PubMed  Article  Google Scholar 

  58. 58.

    Wang S, Zhang J, Nauli SM et al (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Ward CJ, Hogan MC, Rossetti S et al (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    PubMed  Article  Google Scholar 

  60. 60.

    Ward CJ, Yuan D, Masyuk T et al (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Woollard JR, Punyashtiti R, Richardson S et al (2007) A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation. Kidney Int 72:328–336

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Wu Y, Dai XO, Li Q et al (2006) Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 15:3280–3292

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Yokoyama T, Copeland NG, Jenkins NA et al (1993) Reversal of left-right asymmetry: a situs inversus mutation. Science 260:679–682

    PubMed  Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P.C. Harris Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, P., Czarnecki, P. Ziliopathien. medgen 21, 14–20 (2009). https://doi.org/10.1007/s11825-009-0144-0

Download citation

Schlüsselwörter

  • Primäre Zilien
  • Motile Zilien
  • Ziliopathie
  • Ziliäre Dyskinesie (PCD)
  • Polyzystische Nierenerkrankung (PKD)

Keywords

  • Primary cilia
  • Motile cilia
  • Ciliopathies
  • Primary ciliary dyskinesia (PCD)
  • Polycystic kidney disease (PKD)