Skip to main content

3D-Fluoreszenz-in-situ-Hybridisierung und Zellkernarchitektur

3D fluorescent in situ hybridization and nuclear architecture

Zusammenfassung

Fluoreszenz-in-situ-Hybridisierung an dreidimensional konservierten Zellkernen (3D-FISH) ist eine effiziente Methode für Untersuchungen zur 3D-Anordnung von Chromatin im Zellkern. Die Zellkernarchitektur stellt eine Ebene epigenetischer Mechanismen der Genregulation dar. 3D-FISH-Untersuchungen belegten eine große Variabilität in den Nachbarschaftsbeziehungen individueller Chromosomenterritorien im Zellkern. Im Gegensatz hierzu konnte eine distinkte radiale, von der Gendichte abhängige Anordnung von Chromatin gezeigt werden, die evolutionär hochkonserviert ist. Genreiches Material ist bevorzugt in der Kernmitte, genarmes in der Kernperipherie angeordnet. Die Frage einer räumlichen Assoziation kotranskriptionell exprimierter Gene (so genannte „expression hubs”) wird derzeit kontrovers diskutiert.

Abstract

Fluorescent in situ hybridization on three-dimensionally preserved nuclei (3D-FISH) is an efficient method of analyzing higher-order arrangements of chromatin, which constitutes the highest level of epigenetic gene regulation. 3D-FISH analyses have disclosed a high variability with regard to the side-by-side arrangements of chromosome territories. In contrast, a distinct radial positioning of chromatin correlating to local gene density has been shown for a large number of cell types and has been maintained over a long period during evolution. The issue of a spatial association of cotranscriptionally expressed genes, such as the formation of “expression hubs,” is currently a matter of controversial discussion.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Albiez H, Cremer M, Tiberi C et al. (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14: 707–733

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bolzer A, Kreth G, Solovei I et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157

    PubMed  Article  Google Scholar 

  3. 3.

    Boveri T (1909) Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch Zellforsch 3: 181–268

    Google Scholar 

  4. 4.

    Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138

    PubMed  Article  Google Scholar 

  5. 5.

    Brown JM, Leach J, Reittie JE et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172: 177–187

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50: 161–176

    PubMed  Google Scholar 

  7. 7.

    Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50: 223–272

    PubMed  CAS  Google Scholar 

  8. 8.

    Cremer T, Emmerich P, Lichter P (1987) Gibt es eine zelltypspezifische Anordnung des Chromatins in Säugerzellkernen? Argumente von Ungläubigen, Agnostikern und Gäubigen. Ann Univ Sarav Med [Suppl] 7: 67–71

    Google Scholar 

  9. 9.

    Cremer T, Lichter P, Borden J et al. (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80: 235–246

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Cremer M, Hase J von, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541–567

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cremer M, Kupper K, Wagler B et al. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162: 809–820

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cremer T, Cremer M, Dietzel S et al. (2006) Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol 18: 307–316

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Cremer M, Müller S, Köhler D et al. (2007) Cell preparation and multicolor FISH in 3D preserved cultured mammalian cells. CSH Protocols doi:10.1101/pdb.prot4723

    Google Scholar 

  14. 14.

    Croft JA, Bridger JM, Boyle S et al. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119–1131

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114: 212–229

    PubMed  Article  Google Scholar 

  16. 16.

    Goetze S, Mateos-Langerak J, Gierman HJ et al. (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27: 4475–4487

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Grasser F, Witt V, Lanctot C et al. (2007) Nuclear topology of trans-dev genes and flanking ultra-conserved non-coding sequence clusters in mouse and chicken development. Chromosome Res 15: 67

    Article  Google Scholar 

  18. 18.

    Grasser F, Neusser M, Fiegler H et al. (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121: 1876–1886

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Hepperger C, Otten S, Hase J von et al. (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116: 117–133

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Jhunjhunwala S, Zelm MC van, Peak MM et al. (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133: 265–279

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kupper K, Kolbl A, Biener D et al. (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116: 285–306

    PubMed  Article  Google Scholar 

  22. 22.

    Lanctot C, Cheutin T, Cremer M et al. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 104–115

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lanctot C, Kaspar C, Cremer T (2007) Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp Cell Res 313: 1449–1459

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Lichter P, Cremer T, Borden J et al. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lichter P, Tang CJ, Call K et al. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Mateos-Langerak J, Goetze S, Leonhardt H et al. (2007) Nuclear architecture: is it important for genome function and can we prove it? J Cell Biochem 102: 1067–1075

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17: 80–90

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Müller S, Neusser M, Köhler D et al. (2007) Preparation of complex DNA probe sets for 3D FISH with up to six different fluorochromes. CSH Protocols doi:10.1101/pdb.prot4730

    Google Scholar 

  30. 30.

    Murmann AE, Gao J, Encinosa M et al. (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311: 14–26

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Neusser M, Schubel V, Koch A et al. (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116: 307–320

    PubMed  Article  Google Scholar 

  32. 32.

    Ohlsson R, Gondor A (2007) The 4C technique: the ‚Rosetta stone‘ for genome biology in 3D? Curr Opin Cell Biol 19: 321–325

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Rabl C (1885) Über Zelltheilung. Morph Jb 10: 214–330

    Google Scholar 

  34. 34.

    Roix JJ, McQueen PG, Munson PJ et al. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34: 287–291

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ronneberger O, Baddeley D, Scheipl F et al. (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 16: 523–562

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Shopland LS, Lynch CR, Peterson KA et al. (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174: 27–38

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Simonis M, Klous P, Splinter E et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38: 1348–1354

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Solovei I, Cavallo A, Schermelleh L et al. (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276: 10–23

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Solovei I, Grasser F, Lanctôt C (2007) FISH on histological sections. CSH Protocols doi:10.1101/pdb.prot4729

    Google Scholar 

  40. 40.

    Solovei I, Lanctot C, Kösem S et al. (2007b) Adaptive evolution of nuclear architecture: unique organization of rod photoreceptorcell nuclei in nocturnal mammals. Chromosome Res 15: 12–13

    Google Scholar 

  41. 41.

    Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12: 368–375

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Spilianakis CG, Lalioti MD, Town T et al. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435: 637–645

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Tanabe H, Muller S, Neusser M et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99: 4424–4429

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Trinkle-Mulcahy L, Lamond AI (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 582: 1960–1970

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Ploeg M van der (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44: 7–42

    PubMed  Google Scholar 

  46. 46.

    Walter J, Joffe B, Bolzer A et al. (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114: 367–378

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Zhao Z, Tavoosidana G, Sjolinder M et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38: 1341–1347

    PubMed  Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Cremer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cremer, M., Müller, S., Solovei, I. et al. 3D-Fluoreszenz-in-situ-Hybridisierung und Zellkernarchitektur. medgen 20, 379–385 (2008). https://doi.org/10.1007/s11825-008-0132-9

Download citation

Schlüsselwörter

  • 3D-FISH
  • Zellkernarchitektur
  • Epigenetik
  • Chromatinanordnung
  • Konfokale Mikroskopie

Keywords

  • 3D-FISH
  • Nuclear architecture
  • Epigenome
  • Chromatin arrangement
  • Confocal microscopy